
A Cloud-Based Trajectory Data Management System∗

Ruiyuan Li1,2 Sijie Ruan1,2 Jie Bao2 Yu Zheng1,2,3†
1School of Computer Science and Technology, Xidian University, China

2Urban Computing Group, Microsoft Research, Beijing, China
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

{v-ruiyli, jiebao, yuzheng}@microsoft.com sjruan94@gmail.com

ABSTRACT
With the rapid development of location-acquisition techniques,
massive trajectories are continuously generated. Many urban appli-
cations rely heavily on the data mining/analysis results of massive
trajectory data. This demo presents a holistic data management
system for both historical and real-time trajectory records based on
a cloud platform, such as Microsoft Azure. The proposed system
is able to efficiently support a variety of trajectory queries, includ-
ing ID-Temporal query, Spatio-Temporal query, and Path-Temporal
query. With these queries, we demonstrate that different urban
applications can be realized in a much easier way.

CCS CONCEPTS
• Information systems→ Spatial databases and GIS;

KEYWORDS
Trajectory Data Management, Cloud Computing

1 INTRODUCTION

Massive trajectory data is generated continuously with the rapid
development of location-acquisition devices, e.g., smart phones.
This massive trajectory data offers very rich information about
users and their locations [1]. Many urban computing applications
rely on the analytical results of trajectory data [2], such as traf-
fic modeling, mobility pattern discovery, and location-based rec-
ommendation. Taking advantage of cloud computing platforms is
clearly the best option to efficiently manage large-scale trajectory
data. Existing works [3–6] leverage distributed computing plat-
forms, e.g. Hadoop and Spark, to support spatio-temporal queries,
which cannot directly be applied to trajectories, nor can they handle
massive trajectory updates. To this end, this paper demonstrates a
holistic trajectory data management system for both historical and
real-time trajectories, building on our previous work [7].

However, managing massive trajectory data in a real-time man-
ner is a non-trivial task, as the system not only needs to handle
∗The work was supported by the National Natural Science Foundation of China (Grant
No. 61672399, No. U1609217) and the China National Basic Research Program (973
Program, No. 2015CB352400)
†Yu Zheng is the correspondence author of this paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5490-5/17/11.
https://doi.org/10.1145/3139958.3139990

Azure Table Azure Redis Azure Storm

Cloud Platform

Trajectory Data Management System
Applications

Traffic Flow Prediction

Path Recommendation

Taxi Management

GPS Updates

Q
u

er
y
 A

P
I

Pre-
processing

Indexing
Query

Processing

Figure 1: System Framework.
the high volume updates from moving objects, but also retrieves
querying results efficiently from a large-scale trajectory dataset. On
the other hand, existing cloud computing platforms, e.g., Microsoft
Azure, are not designed to process trajectory data. To address this
challenge, we build a middle layer between the cloud computing
components and urban applications, which helps urban application
developers to utilize these cloud computing components in deal-
ing with massive trajectory data more conveniently and efficiently.
Figure 1 gives an overview of our proposed cloud-based trajectory
data management system [8], which 1) takes advantage of exist-
ing cloud components, e.g., cloud data storage, data caching, and
distributed computing; 2) preprocesses and indexes high volume
trajectory data updates; and 3) supports different types of queries
for many urban applications. The three main trajectory query types
supported by our system are:
ID-Temporal Query, which retrieves trajectory data based on an
object ID and a temporal range, e.g., finding the trajectory of taxi
“guiaxx” from 16:00 to 18:00 on one day. This is very useful in a taxi
management system, when the user wants to know the detailed
taxi trajectories of a particular vehicle in the given temporal range.
Spatio-Temporal Query, which finds trajectories in a given
spatio-temporal range, e.g. finding all the trajectories passing the
railway station area from 11:00 to 13:00 in a day. For instance, in
traffic flow prediction [9], the inflow/outflow of a region in a specific
time interval can be calculated using Spatio-Temporal query.
Path-Temporal Query, which finds trajectories traversing a path
(i.e., a sequence of connected road segments) during a temporal
range [10], e.g., finding all taxis traveling throughWest 156th Street
in New York from 16:00 to 18:00 today. This type of query is partic-
ularly useful in travel time estimation applications [11].

In this paper, we present our cloud-based trajectory data manage-
ment system, with three main components, as shown in Figure 2:

Preprocessing, which uses the distributed streaming system,
i.e., Storm, to handle massive trajectory updates and perform the
map-match task in real-time (detailed in Section 2).

Indexing, which organizes the massive trajectory data effec-
tively based on different tasks in the Azure storage component, e.g.,
Azure Table (detailed in Section 3).

https://doi.org/10.1145/3139958.3139990

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Ruiyuan Li et al.

Indexing
Query

Processing
Pre-

processing

Parse & Clean

Map Match

Spatio-Temporal Index

ParitionKey RowKey Time Lat Lng

2017061110
201706111035
02189_guiaxx

104.65

...............

2017-06-11
10:35:02

26.15

TableName: RegionID
PlateID

guiaxx

...

ID-Temporal
Query

Spatio-
Temporal Query

Path-Temporal
Query

e1

e2

e3

e2

e3

e4

e3

e4

e4

e4

e4

M
a
xH
ei
g
ht

Root

TableName: e3e4

ParitionKey RowKey StartTime EndTime PlateID

2017061110
201706111035
02189_guiaxx guiaxx

...............

2017-06-11
10:35:02

2017-06-11
10:38:05

Path-Temporal IndexID-Temporal Index

ParitionKey RowKey Time Lat Lng

2017061110
201706111035

02189
104.65

...............

2017-06-11
10:35:02

26.15

TableName: “GPS”+PlateID

ParitionKey RowKey StartTime EdgeID

2017061110
201706111035

02189
............

2017-06-11
10:35:02

15225

TableName: “Mapped”+PlateID
EndTime

2017-06-11
10:35:16

Figure 2: Overview of the cloud-based trajectory management system.

Query Processing, which efficiently answers different types of
trajectory queries issued from users or urban applications using the
indexes and parallel computing framework (detailed in Section 4).

Finally, we demonstrate three different real applications that are
deployed onMicrosoft Azure using our trajectory data management
system (detailed in Section 5). Our ultimate goal is to implement
the trajectory data management function as a future Azure service.

2 PREPROCESSING

The left part of Figure 2 illustrates the trajectory preprocessing
component, which consists of two main tasks:
Parse & Clean. This task receives the GPS point updates from
different data sources (e.g., taxis or smart phones), parsing and
organizing the point data as trajectories (e.g., grouping them based
on their plate numbers). Also, we remove the outlier GPS points in
this step, using a heuristics-based outlier detection method [1].
Map Matching. This task maps the GPS points to the correspond-
ing road segments. Map-matched trajectories are very useful for
road network-based traffic modeling. We adopt an interactive
voting-based map-matching algorithm [12] to perform the task.
As the volume of GPS updates is very huge and map-matching task
is time consuming, we leverage the distributed streaming comput-
ing platform in Azure (i.e., Storm) to speed up the map-matching
process. The details of storm-based map-matching can be found in
our previous work [7]. Finally, the preprocessed datasets are stored
in an Azure Redis server (a cache service) to be accessed efficiently
by different indexing algorithms.

3 TRAJECTORY INDEXING

The middle portion of Figure 2 gives the details about the trajec-
tory indexing in our system, including ID-Temporal index, Spatio-
Temporal index, and Path-Temporal index. As most of our queries
involve spatial or temporal range selections and Azure Table is very
efficient in answering range queries (especially within the same
partition), Azure Table is used extensively in our system to store
indexes. Moreover, the main difference in indexing the trajectory
data in Azure storage is that we essentially store multiple copies of
the trajectory data rather than maintain an index structure with
pointers to the actual data. The main reason is that the storage
cost is much cheaper compared to the computing cost on the cloud,

e.g., it is about 10 USD per 1TB/month 1, and is more efficient to
retrieve data when they are organized together in Azure Table. As
a result, the main task in building trajectory indexes in Azure is
to group the data that will be retrieved together within the same
Azure Table partition.

3.1 ID-Temporal Index
As depicted in the left portion of the indexing component in Figure
2, we build an ID-temporal index for both raw trajectories and
map-matched trajectories. The trajectory data is stored in Azure
Table, where each table contains the trajectories of a moving object
(identified by their plate numbers), hence we can find the trajecto-
ries of a given object directly. The PartitionKey of a record is the
time that is accurate to the hour information, and the RowKey is the
exact time of the record. For example, if a GPS point is generated
at 10:35:02.189, Jun 11th, 2017, its PartitionKey is “2017061110”,
and RowKey is “20170611103502189”. The reasons for designing
PartitionKey and RowKey in this way are: 1) GPS points within the
same partition are usually retrieved together, when answering an
ID-Temporal query; 2) RowKey in Azure Table serves as an identifier,
and there are no GPS points generated at the same time; and 3) us-
ing the hour information as the PartitionKey achieves a balance
between indexing and query processing, as a larger PartitionKey
is more efficient in indexing but suffers from query processing, with
details found in [7].

3.2 Spatio-Temporal Index
We construct a Spatio-Temporal index to accelerate Spatio-
Temporal query that finds the sub-trajectories within a given spatio-
temporal range. As shown in the center portion of the indexing
component in Figure 2, we build a static spatial index by partitioning
the space into disjoint and uniform grids, where each grid repre-
sents a region with an identity. Any other static partition method,
e.g. R-tree or quad-tree, can also be applied. We then create an
Azure table for each region based on its identity. The trajectory
records that belong to the same region are grouped together and
inserted into the corresponding table. Thus, we can retrieve the tra-
jectories in a specified region by directly finding the corresponding
table. The PartitionKey of a GPS point is the time that is accurate
to the hour, e.g., “2017061110”, and the RowKey is the combination of
exact time and moving object ID, e.g. “20170611103502189_guiaxx”.
The reasons for designing the RowKey in that way are: 1) we need
1https://azure.microsoft.com/en-us/pricing/details/storage/

A Cloud-Based Trajectory Data Management System SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

to identify the GPS points based on RowKey, adding the moving
object ID at the end to avoid the conflicts of two GPS points gener-
ated at the same time by different objects; 2) putting the accurate
time in the front of the RowKey enables us to take advantage of the
efficient range queries of the RowKeys to serve the temporal range
selections.

3.3 Path-Temporal Index
As depicted in the right portion of the indexing component in Figure
2, we employ a table-based suffix tree, as the Path-Temporal index.
The table-based suffix tree treats the road segments of map-matched
trajectories as a sequence of characters. To overcome the issue of
generating a very large suffix index with massive trajectories, the
table-based suffix tree is designed with two main parts: 1) suffix
tree structure, which has a limited height and a pointer to an Azure
table, and 2) suffix tree records, which are stored in Azure tables and
organized based on trajectories with the same suffix, i.e., passing
the same road segments.

There are three main steps to construct the Path-Temporal index:
1) Suffix Generation, which generates the sub-trajectories whose
lengths are no more than H ; 2) Suffix Grouping, which groups the
generated sub-trajectories based on the common suffixes; 3) Record
Insertion, which inserts the grouped sub-trajectories information
into the corresponding Azure table. Suppose we set the max height
H as two, the map-matched trajectory e1 → e2 → e3 will be
broken into five sub-trajectories: e1, e2, e3, e1 → e2, and e2 →

e3. These sub-trajectories will be stored in their corresponding
tables, among which an entity records the trajectory information
including the moving object ID, and the enter and leave times of
the moving object. The PartitionKey of an entity is the enter time
that is accurate to the hour, e.g. “2017061110”, while the RowKey
is the combination of exact enter time and moving object ID, e.g.
“20170611103502189_guiaxx”. The reason for the key design is the
same as Spatio-Temporal index’s.

…

ShuffleGrouping

…

FieldGrouping

…

…

Record
Inserter

Record
Inserter

Spout
Suffix

Generator

Suffix
Generator

Figure 3: Storm-Based Path-Temporal Index.
As there are numerous sub-trajectories generated, a large number

of trajectory records need to be inserted into many tables, which
may cause CPU and I/O bottlenecks in the standalone environ-
ment. Therefore, we develop a distributed framework on the Azure
distributed processing platform, i.e. Storm, for the index building
process. As depicted in Figure 3, the Spout reads map-matched tra-
jectories and dispatches them to the Suffix Generator bolts using the
ShuffleGroupingmechanism (i.e., random assignment, to achieve the
workload balance). The Suffix Generator receives a map-matched
trajectory, and breaks it into sub-trajectories. These sub-trajectories
are finally emitted to the Record Inserter bolts using the FieldGroup-
ing mechanism grouped by the tables, which guarantees that the
records to be inserted in the same table flow into the same bolt.

The Record Inserter bolt aggregates the same suffixes and inserts
them into an Azure table in batches to reduce high I/O overhead of
frequent small writings.

4 QUERY PROCESSING

4.1 ID-Temporal Query Processing
When querying the GPS/map-matched trajectories of a moving
object during a given time period, we first find the correspond-
ing Azure table with the object ID. Then, query time is con-
verted as the PartitionKey and RowKey ranges. For example,
when searching for the trajectories of moving object “guiaxx”
during 10:30˜11:00 on Jun 11th, 2017, the ID-Temporal query
is transformed as retrieving data from Azure table “guiaxxx”:
"PartitionKey ge ‘2017061110’ and PartitionKey lt
‘2017061111’ and RowKey ge ‘20170611103000000’ and
RowKey lt ‘20170611110000000’".

4.2 Spatio-Temporal Query Processing
To answer the Spatio-Temporal query, we first find the regions that
overlap with the given spatial range, which gives us the Azure
Table names. After that, we can execute the temporal range queries
in parallel over the corresponding tables in light of the specified
time period. Finally, the results obtained from different tables are
aggregated and returned.

4.3 Path-Temporal Query Processing
There are three main steps to answer the Path-Temporal query. 1)
Query Path Decomposition. We decompose the query path whose
length is longer than H into several overlapped H -length sub-paths
which can map to corresponding table names. For example, suppose
thatH is set as three, we can decompose the query path e1 → e2 →
e3 → e4 into e1 → e2 → e3 and e2 → e3 → e4, where e1e2e3 and
e2e3e4 are tables generated in the index building process; 2) Record
Retrieval. We retrieve the index records on corresponding tables
in parallel in light of the query time period; and 3) Sub-Trajectory
Reconstruction. Based on the order of the decomposed sub-paths,
we check if the time ranges of the same moving object’s records
retrieved from the corresponding neighbor tables have overlaps.
If so, the corresponding moving object is qualified. For example,
if Tr1 passes e1e2e3 during [10:21, 10:23] and passes e2e3e4 during
[10:22, 10:24], then Tr1 passes e1e2e3e4 during [10:21,10:24] due to
temporal ranges having overlaps.

We can see that there is a trade-off in choosing a suitable H
between index construction and query processing. While smallerH
makes index construction take less computation and smaller records
sizes, the query path needs to be decomposed to more sub-paths
and take more table access.

5 DEMO SCENARIOS

The proposed cloud-based trajectory data management sys-
tem [8] will be demonstrated to the conference audience using
real-time taxi trajectories from Guiyang (the capital of Guizhou
Province, China) starting from Sept. 30th, 2016. The dataset contains
around 5,000 daily active taxis, with each taxi generating one GPS

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Ruiyuan Li et al.

Figure 4: ID-Temporal Query Interactive Interface.

Figure 5: Spatio-Temporal Query Interactive Interface.

record every 1 minute. The raw trajectory data and map-matched
trajectory data are about 7GB and 60.86GB in disk space per month
respectively. As shown in Figure 4, the map view is displayed on the
left, and the interactive area is on the right. Attendees can switch
the top-right tabs among three types of query.

5.1 Scenarios for ID-Temporal Query
Attendees can submit an ID-temporal query through the GUI
(Graphical User Interface) by selecting a taxi, inputting a time
period, and choosing the trajectory type (GPS trajectory or map-
matched trajectory), as shown in Figure 4. The results will be listed
in the interactive area, and the corresponding trajectory is drawn
on the map, among which the green mark and red mark denote the
start position and end position respectively.

ID-Temporal query can be widely used in the taxi management
system, in which the manager can have full knowledge of driving
positions and behaviors of taxi drivers at any time. In package trac-
ing and carry-out services, clients can see their delivery progress
through ID-Temporal query.

5.2 Scenarios for Spatio-Temporal Query
The GUI for the Spatio-Temporal query is depicted in Figure 5.
Attendees can drag the map to adjust the view by selecting the
hand icon and drawing one or more rectangle regions on the map
after selecting the rectangle icon. Each rectangle region corresponds
to two text fields for its temporal period constraint input. After
attendees click the Submit button, the qualified records that satisfy
all spatio-temporal constraints are listed. Attendees can click each
record, and its corresponding trajectory is drawn on the map.

Figure 6: Path-Temporal Query Interactive Interface.
The Spatio-Temporal query can be used in many urban com-

puting applications, such as air quality inference and traffic flow
prediction. In the air quality inference scenario, Zheng et al. [9]
adopt Spatio-Temporal query to model the spatio-temporal depen-
dencies between air quality and traffic. In the traffic flow prediction
scenario, Zhang et al. [13, 14] use Spatio-Temporal query to count
the inflow and outflow of every region in a city for a specific time
interval. The traffic inflow heat map is shown in Figure 5(b).

5.3 Scenarios for Path-Temporal Query
Attendees can view the traffic conditions of a path through the GUI
by Path-Temporal query. As shown in Figure 6(a), attendees select
two paths from Guizhou Provincial People’s Hospital to Guiyang
Longdongbao International Airport. After clicking the Submit but-
ton, the selected paths will be filled with color, where red denotes
heavy traffic and green represents smooth traffic. Attendees can
click each path, and its travel time cost distribution w.r.t. hour will
come up, which is helpful for traffic analysis, as Figure 6(b) shows.

Path-Temporal query can be adopted in many traffic-related ap-
plications. Wang et al. [11] estimate the travel time of each path to
find an optimal path concatenation solution using Path-Temporal
query. Knowing several candidate paths’ travel time, path recom-
mendation can also be performed. Mining the frequent paths and
discovering the bottlenecks of a road network using Path-Temporal
query can help decision makers plan road networks.

REFERENCES
[1] Yu Zheng. Trajectory data mining: an overview. TIST, 6(3):29, 2015.
[2] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts,

methodologies, and applications. TIST, 5(3):38, 2014.
[3] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. Geospark: A cluster computing

framework for processing large-scale spatial data. In SIGSPATIAL, page 70, 2015.
[4] Ahmed Eldawy andMohamed FMokbel. Spatialhadoop: Amapreduce framework

for spatial data. In ICDE, pages 1352–1363. IEEE, 2015.
[5] Louai Alarabi. St-hadoop: A mapreduce framework for big spatio-temporal data.

In ACM International Conference on Management of Data, pages 40–42, 2017.
[6] Qiang Ma, Bin Yang, Weining Qian, and Aoying Zhou. Query processing of mas-

sive trajectory data based on mapreduce. In Proceedings of the first international
workshop on Cloud data management, pages 9–16. ACM, 2009.

[7] Jie Bao, Ruiyuan Li, Xiuwen Yi, and Yu Zheng. Managing massive trajectories
on the cloud. In SIGSPATIAL, page 41. ACM, 2016.

[8] Urbantraffic system. http://urbantraffic.chinacloudsites.cn/, 2017.
[9] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. U-air: When urban air quality

inference meets big data. In SIGKDD, pages 1436–1444. ACM, 2013.
[10] Ruiyuan Li, Sijie Ruan, Jie Bao, Yanhua Li, Yingcai Wu, and Yu Zheng. Querying

massive trajectories by path on the cloud. In SIGSPATIAL. ACM, 2017.
[11] Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a path using

sparse trajectories. In SIGKDD, pages 25–34. ACM, 2014.
[12] Jing Yuan, Yu Zheng, Chengyang Zhang, Xing Xie, and Guang-Zhong Sun. An

interactive-voting based map matching algorithm. In MDM, pages 43–52, 2010.
[13] Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks

for citywide crowd flows prediction. AAAI 2017, November 2016.
[14] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. Dnn-based

prediction model for spatio-temporal data. In SIGSPATIAL, page 92. ACM, 2016.

	Abstract
	1 Introduction
	2 Preprocessing
	3 Trajectory Indexing
	3.1 ID-Temporal Index
	3.2 Spatio-Temporal Index
	3.3 Path-Temporal Index

	4 Query Processing
	4.1 ID-Temporal Query Processing
	4.2 Spatio-Temporal Query Processing
	4.3 Path-Temporal Query Processing

	5 Demo Scenarios
	5.1 Scenarios for ID-Temporal Query
	5.2 Scenarios for Spatio-Temporal Query
	5.3 Scenarios for Path-Temporal Query

	References

