
Managing Massive Trajectories on the Cloud

Jie Bao1 Ruiyuan Li1,2 Xiuwen Yi4,1 Yu Zheng1,2,3 ∗

1Microsoft Research, Beijing, China
2School of Computer Science and Technology, Xidian University, China

3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
4School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China

{jiebao, v-ruiyli, v-xiuyi, yuzheng}@microsoft.com

ABSTRACT
With the advances in location-acquisition techniques, such as GPS-
embedded phones, enormous volume of trajectory data is gener-
ated, by people, vehicles, and animals. These trajectory data is one
of the most important data sources in many urban computing ap-
plications, e.g., the traffic modeling, the user profiling analysis, the
air quality inference, and the resource allocation.

To utilize the large scale trajectory data efficiently and effec-
tively, cloud computing platforms, e.g., Microsoft Azure, are the
most convenient and economic way. However, the traditional cloud
computing platforms are not designed to deal with the spatio-
temporal data, such as trajectories. To this end, we design and
implement a holistic cloud-based trajectory data management sys-
tem on Microsoft Azure to bridge the gap between the massive
trajectory data and the urban applications. Our system can effi-
ciently store, index and query massive trajectory data with three
functions: 1) trajectory ID-temporal query, 2) trajectory spatio-
temporal query, and 3) trajectory map-matching. The efficiency
of the system is tested and tuned based on the real-time trajectory
data feeds. The system is currently used in many internal urban
applications, as we will illustrate as the case studies.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS

Keywords
Spatio-temporal Data Management, Trajectory Data Management,
Cloud Computing, Microsoft Azure.

1. INTRODUCTION

With the advances in location-acquisition techniques, such as
GPS-embedded phones, enormous volume of trajectory data is gen-
∗The work was supported by the National Natural Science Foun-
dation of China (Grant No. 61672399 and No. U1401258),
the China National Basic Research Program (973 Program, No.
2015CB352400), and NSFC Grant No. 61572488.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996916

C
lo
u
d

S
to
ra
g
e
s

In
d
e
x
e
s

Azure Table Azure Blob

T
ra

je
c
to

ry
 D

a
ta

M
a
n

a
g

e
m

e
n

t
U

rb
a
n

A
p

p
li
c
a
ti

o
n

s

Categories

R
eg

io
ns

Categories

C
at

eg
or

ie
s

R
eg

io
ns

Features

A

X = R×U

Z

T
im

e
sl

ot
s

Regions

Y

Y = T×RT

X

Temporal Classifier

Spatial Classifier

Air Quality: Inference, PredictionTraffic Modeling

Spatial Index Spatio-temporal Index

...

Interface
Trajectory Queries

Map-Matching

Azure Redis

Figure 1: Motivation Scenarios.

erated, by people, vehicles, and animals. As demonstrated in Fig-
ure 1, processing and managing the massive trajectory data serves
as the foundation of many urban computing applications [1]. Many
of the urban data mining/machine learning models [2] are based on
the trajectory data, e.g.,: 1) air quality inference and predication [3,
4], where the model executes a large amount of spatio-temporal
range queries (i.e., looking for the partial trajectories that fall in
the given spatial and temporal range); and 2) traffic modeling [5,
6], where the application requires the availability of the real-time
map-matched trajectory information (i.e., mapping the raw trajec-
tory points onto the corresponding road network segment).

Although, the cloud computing platforms, e.g., Microsoft Azure,
offer a faster, more reliable, and economical option for the users/-
companies to store and compute the massive data in large scale, by
providing large scale storage components, like Azure Blob and Ta-
ble, as well as many parallel computing platforms, such as Hadoop,
Spark and Storm. However, the conventional cloud computing
platforms are not optimized to deal with the spatio-temporal data
sets, like trajectories. In other words, it cannot process the spatio-
temporal queries over the trajectories in an efficient way.

In the recent years, there have been some attempts to improve the
spatial query efficiency in the cloud/parallel computing environ-
ments, e.g., Hadoop-GIS [7], SpatialHadoop [8], SpatialSpark [9],
and GeoSpark [10]. However, all of the aforementioned techniques
only work efficiently on managing and querying the static geospa-
tial data, e.g., POIs and Road networks. To the best of our knowl-
edge, there is no work on adapting the spatio-temporal data set
(most importantly, the trajectory data) in the cloud/parallel com-
puting platforms to support the real time large scale trajectory data
mining and querying, and hence to offer the help for the urban com-

puting applications.
To this end, we develop a holistic cloud-based trajectory data

management system to bridge the gap between the cloud comput-
ing platform and massive trajectory data set. We identify there are
three important tasks in utilizing the massive trajectory data set in
urban applications: 1) ID-temporal query, which retrieves the par-
tial trajectories within a given temporal period and a trajectory ID,
e.g., finding the route of a taxi traveled from 10:00 AM to 10:30
AM; 2) spatio-temporal range query, which retrieves the trajecto-
ries within a given spatio-temporal period, e.g., finding all the par-
tial trajectories that passed downtown area from 10:00 AM to 11:00
AM; and 3) map-matching, which maps the raw GPS points in a tra-
jectory onto its corresponding road segment. The objective of our
system is to provide an efficient solution to support the full-fledged
urban data mining applications: both the large scale mining (in the
model building phase) and the real-time service providing (in the
online inference phase).

To support these important functionalities in the cloud system,
i.e., Microsoft Azure, in a more efficient way, we optimize the stor-
age schema based on different funcationalities, and use the parallel
computing environment, e.g., Storm. As a result, our system can
take the high volume trajectory updates and perform the services
in real-time. The proposed system includes three main modules:
1) trajectory storage module, which stores the trajectory data based
on its trajectory ID in Azure Table, as well as an extra copy on a
Redis server; 2) trajectory spatio-temporal indexing module, which
creates a copy of trajectory data based on their spatio-temporal
properties to speed up the trajectory spatio-temporal query process-
ing; and 3) trajectory map-matching module, which utilize Apache
Storm, the parallel streaming platform, to map the massive GPS
points to the corresponding road segment in the real-time way. The
contributions of the paper are summarized as follows:

• We provide the first attempt on adapting the cloud computing
platform to work efficiently with massive trajectory data both
in the cloud storage components and computing components.
• The trajectory data in the system is stored in Azure Table

with a properly designed storage schema and index to answer
the ID-temporal queries. We also maintain another copy of
trajectory data in the system with a spatio-temporal index to
support the spatio-temporal queries.
• With the massive trajectory stored in the Azure storage com-

ponent, we leverage Storm platform to perform the map-
matching service. In this way, we are able to provide the
service in a real-time manner.
• We evaluate our system design with the real taxi trajectories

updated continuously from Guiyang City, China. The exper-
imental results provide some lessons and insights on how to
tune the parameters in Azure services.
• We also demonstrate the capability of our cloud-based trajec-

tory data management system via three real case study sys-
tems: 1) real-time taxi data management, 2) real-time traffic
modeling, and 3) trajectory-based resource allocation.

Section 2 introduces the preliminaries about the trajectory data,
the basics in Microsoft Azure, and provides a full picture of our
system. The three main components: 1) trajectory data store, 2) tra-
jectory spatio-temporal indexing, and 3) trajectory map-matching,
are described in Section 3, Section 4 and Section 5, respectively.
Experiments are given in Section 6 to show the lessons we learnt.
Three case studies are demonstrated in Section 7. The related
works are summarized in Section 8. Finally, Section 9 concludes
the paper.

2. PRELIMINARY

In this section, we first provide the definition of the trajectory
data. After that, we give an introduction of the cloud computing
components we used in the system from Microsoft Azure. Finally,
an overview of our system is presented

2.1 Trajectory Data

p
1 p

2

p
3

p
4

p
5

s
1

s
2

s
3

p
1

p
2

p
5

Spatio-temporal

Properties

lat
2

lng
2

t
2

lat
1

lng
1

t
1

lat
5

lng
5

t
5

Property

Readings

speed
2

dir
2

speed
1

dir
1

speed
5

dir
5

… … … ……

(a) GPS Points Log (b) An Example of Trajectory

… …

Figure 2: An Example of Trajectory Data.

DEFINITION 1. GPS points. A GPS point pi contains two parts
of information: 1) spatio-temporal information, which includes a
pair of latitude and longitude coordinates, and a timestamp; and
2) property readings, which may include the speed, direction, and
any other information obtained at by the sensors. An entry in Fig-
ure 2a is an example GPS point, and the green dots on Figure 2b
demonstrates the GPS point projection on the space.

DEFINITION 2. GPS Trajectory A GPS trajectory Tr contains
a list of GPS points ordered by their timestamps. As shown in
Figure 2b, on a two dimensional plane, we can sequentially connect
these GPS points into a curve based on their time serials Tr =
{p1 → p2 → ...→ p5} to form a trajectory.

DEFINITION 3. Map-Matched Trajectory Trajectory map-
matching projects the raw GPS points in a trajectory onto its cor-
responding spatial network. Figure 2b gives an map-matching ex-
ample, where the green dots (GPS points) are projected onto the
corresponding road segments (in red). Thus, the trajectory is con-
verted as Tr = {s1 → s2 → s3}.

2.2 Cloud Computing Components
In this subsection, we describe the main cloud computing com-

ponents in Microsoft Azure: 1) cloud storage components and
2) cloud computing components.

Storage

Account

Storage

Container
Storage Blob

Azure Table Table Entity

Sally

Directory

Picture

John
PartitionKey

RowKey

PartitionKey

RowKey

Table

Name 1

Table

Name 2

Movie.avi

File.jpg

Figure 3: An Overview of Azure Storage.

Cloud Storage Components. The storage components in Azure 1

mainly contain Azure Blob, Azure Table, and Redis.

• Azure Blob. Blob (A Binary Large Object) is a collection
of binary data stored as a single entity in Azure storage sys-
tem. Blob can be compared to the file in the conventional file
systems. Blob storage can store any type of text or binary
data, such as a document, media file, or even application ex-
ecutable.
Figure 3 gives an overview of the hierarchy structure of
Blobs, where each storage account can create multiple stor-
age containers, which have a grouping of a set of blobs (it is
very similar to the directory in the conventional file system).
A Blob file needs to be stored under a container. There are
three types of blobs in Azure: 1) block blob, 2) append blob
and 3) page blob. Block blob is ideal for storing text or bi-
nary files, such as documents and media files. Append blobs
are optimized for append operations, which makes them use-
ful for logging scenarios. Page blobs has a higher capacity,
and are more efficient for frequent read/write operations. For
example, Azure Virtual Machines use page blobs as OS and
data disks.
There is no limitation on how many files or containers can
be created for a storage account. However, the total size of a
storage account cannot exceed 500 TB 2. Overall, Blobs are
very useful in Azure to store the unstructured data.
• Azure Table Azure Table stores structured NoSQL data

in the cloud. Table storage is a key/attribute store with a
schema-less design. Azure Table is essentially a cloud-based
NoSQL database. Table storage is typically significantly
lower in cost than traditional SQL for similar volumes of
data, and Azure Table can be used in the cloud parallel com-
puting frameworks, such as Hadoop, Spark and Storm. Fig-
ure 3 also gives the hierarchy structure of Azure Table, where
each storage account can create unlimited number of tables
(which are differentiated by table names). In each table, a ta-
ble entities is identified by two keys, partitionkey and
rowkey. Table entities with the same partitionkey are
stored in the same partition.
Azure Table is the best way to store the semi-structured
datasets that don’t require complex joins and foreign keys.
The most efficient way to access Azure Table is through
point queries (i.e., specify both the partitionkey and
rowkey). Azure Table is also very efficient on an-
swering the range queries of rowkey within the same
partitionkey.
• Azure Redis. Azure Redis is based on the popular open-

source Redis cache 3. Azure Redis is an advanced in-memory
key-value store, where keys can contain data structures such
as strings, hashes, lists, sets, and sorted sets. Redis supports
a set of atomic operations on these data types to ensure the
data consistency.
As Azure Redis stores the information in the memory of the
Redis server, it is the best option to put the frequently ac-
cessed, and shared data in the system.

Cloud Computing Component. Besides the conventional virtual
machines, Microsoft Azure also support the following distributed

1https://azure.microsoft.com/en-us/documentation/services/storage/
2https://azure.microsoft.com/en-us/documentation/articles/azure-
subscription-service-limits/
3https://azure.microsoft.com/en-us/services/cache/

Spout

Azure

Blob

Bolt

Bolt

Bolt

Azure

Queue

Azure

Table

Bolt

Bolt

Bolt

Storm Topology

Azure

Storage

Azure Storm

Figure 4: Storm Example in HDinsight.

parallel computing platforms, in the Azure computing component,
called HDinsight 4, to perform large scale data processing.

• Hadoop Hadoop is the most widely used Map-Reduce
framework. Azure HDInsight deploys and provisions man-
aged Apache Hadoop clusters in the cloud to process, ana-
lyze, and report on big data with high reliability and avail-
ability. HDInsight uses the Hortonworks Data Platform
(HDP) Hadoop distribution. Hadoop framework is the best
way to perform offline batch-based big data processing.
• Azure Spark. HDInsight includes Apache Spark, an open-

source project in the Apache ecosystem that can run large-
scale data analytics applications. Comparing to the conven-
tional Hadoop framework, Spark avoids the disk I/Os and is
able to deliver queries up to 100x faster. Spark is widely used
in data analytics and machine learning areas, as it provides a
common execution model for tasks like ETL, batch queries,
interactive queries, real-time streaming, machine learning,
and graph processing on data stored in Azure Storage.
• Azure Storm. Apache Storm is a distributed, real-time event

processing solution for large, fast streams of data. It is the
best option to process the real-time data and provide online
services.
Figure 4 gives an overview of the Storm platform. In a typi-
cal Storm platform, an Azure Queue is maintained to receive
the real-time updates from different data sources. The Spout
in Storm continuously reads the updates from the queue and
distributes them to the Bolts. Each Bolt in the Storm may
have different functionalities and be connected to each other
based on the user’s design, which is referred as a Storm
Topology. Azure storage components, such as Blob and Ta-
ble can be used in parallel throughout the Storm topology.

In our system, we use Storm to speed up the massive trajectory
data process, because its abilities to perform the real-time stream-
ing and online services, which are very important in many urban
computing applications.

2.3 System Overview
Figure 5 gives a full picture of our trajectory data management

system. As demonstrated in the top, the system provide an inter-
face for the more sophisticated urban data management/mining ap-
plications, by providing: 1) ID-temporal query, 2) Spatio-temporal
query, and 3) map-matched results. To enable the efficient and real-
time service, the system employs three main modules, as follows:
Trajectory Storage. The trajectory storage module receives the
raw trajectory data from the user, which can be either historical
files or real-time updates from the network. This module parses

4https://azure.microsoft.com/en-us/services/hdinsight/

Parse

.

.

.

Map

Matching

Azure Table

Azure Table

Interface for Urban Data Management/Mining Applications

Spatio-temporal Query

Inverted

Indexing

Pre-

Processing

Cached Trajectory Data

Trajectory ST-Indexing

Trajectory Map-matching

Partitioned by Space & Time

Azure

Table

Store

Trajectory Storage

Azure Table

Spatio-temporal

Index Building

Azure

Table

Map matched

Trajectories

Road Segment

Inverted Index

ID-Temporal Query

Road Network

Graph

Azure Blob

Map-Matched Traj.

Figure 5: System Overview.

p

1

p

2

p

3

lat

2

lng

2

t

2

lat

1

lng

1

t

1

lat

3

lng

3

t

3

speed

2

dir

2

speed

1

dir

1

speed

3

dir

3

……

p

4

lat

4

lng

4

t

4 speed

4

dir

4

……

……

……

Trajectories

Storage Schema in Azure Table Storage

Tables

Partitions

Table Entries

Figure 6: Example Schema of Trajectory Storage in Azure Table.

the raw GPS points, filters the error points, and organizes them into
trajectories (i.e., grouped by plate numbers or trip IDs and ordered
by time). Then, the processed trajectory data is stored in an Azure
Table to support the ID-Temporal query (detailed in Section 3). An-
other important feature here is that, we also store an extra copy of
organized trajectory data in a Redis server (i.e., the middle bottom
component), because this data will be used by the other two mod-
ules and we can significantly reduce the I/O cost by avoiding the
access to the disk.
Trajectory Spatio-temporal Indexing. The trajectory spatio-
temporal indexing module takes the cached trajectory data from the
Redis server, and organized the GPS points based on their spatio-
temporal properties. A spatio-temporal index is built based on the
Azure Table. In this way, the spatio-temporal range queries can be
answered efficiently (detailed in Section 4).
Trajectory Map-matching. In this module, we also retrieve the
trajectory data from the Redis server, and map each GPS points in
a trajectory onto the corresponding road segment. To enable the
efficiency and real-time service, we implement the map-matching
algorithms on the distributed streaming system, i.e., Storm. This
module also maintains an inverted index for each road segments, to
record the trajectory IDs passed it (detailed in Section 5)

3. TRAJECTORY DATA STORE

In this section, we presents the details about the trajectory stor-
age module. We first describe the overall process to store the tra-
jectory data. After that, we demonstrate the process to support ID-
temporal query efficiently.
Storage Process. There are two main processes in the storage mod-

ule: 1) trajectory data parsing and 2) trajectory data storing.
• In the trajectory data parsing step, our system reads the raw

trajectory data and organizes it. This step reads the raw data (i.e.,
essentially a set of unorganized GPS points) from the external data
sources, e.g., from a file system in the offline scenario, or from a
network stream in the real-time scenario. The main tasks in this
step are: a) grouping the GPS points based on the trip IDs (or
plate number), b) ordering the points based on their timestamps,
and c) filtering the error data. Finally, the organized trajectories are
returned.
• In the trajectory storing step, the system gets the organized data

and store it to the Azure storage component, including Azure Table
(for historical access) and Redis server (for the most recent results).

Initially, we tried to store the trajectory data in the Azure blob
and build an in-memory index, as it is a more straight-forward way.
However, as we will latter demonstrate in the experiment section,
i.e., Section 6, the querying response time is much higher compare
to Azure Table. Thus, in our system all of the trajectory data is
stored in Azure table.

Figure 6 gives an overview of the storage schema we used in the
system. To enable the computing parallelism on different trajecto-
ries, each trajectory is stored as a table in the system, where the ta-
ble name is the plate number or trip ID. In this way, it not only gives
semantic meanings to the storage schema, but also makes it possi-
ble to parallel the computing, if a query contains multiple trajectory
IDs. In each table, the trajectory data is divided into different par-
titions, based on a system specified temporal range, e.g., one hour
or one day. With different granularity of the partitions, the system
performance is different. For example, with a large granularity in-
sertion time may reduce, as more entries can be inserted together in

p

1

p

2

p

3

lat

2

lng

2

t

2

lat

1

lng

1

t

1

lat

3

lng

3

t

3

speed

2

dir

2

speed

1

dir

1

speed

3

dir

3

……

……

……

Trajectories Storage Schema in Azure Table Storage

Tables Partitions

Table Entries

Spatial Area Partition

Temporal Partition

GPS Points

Figure 7: Example Spatio-temporal Trajectory Schema in Azure Table.

a batch, while the query performance may suffer with more entries
to scan in one partition. We will demonstrate more detailed perfor-
mance tuning and provide the design insights in Section 6. Finally,
each GPS point in the partition is an entry in the table, where the
partitionkey is the temporal partition, e.g., “2016-06-25” and
the rowkey is the exact timestamp, like “2016-06-25 11:24:43”.

To minimize the I/O cost for the other modules, we also store a
copy of recent processed trajectory data in a Redis server. The data
stored in the server uses a dictionary data structure, where the key
is the plate number or trip ID, while the value is the GPS points.
ID-Temporal Query Processing. In this step, the module answers
ID-temporal query from the user with two scenarios:
• If the query asks for the most recent trajectory, our system

answers it by retrieving the content from the Redis server. In this
case, the Redis server retrieves the data based on the query ID (plate
number or trip ID) and return the contents to the user. In this way,
we can avoid the disk-related access and improve the response time.
• If the query asks for the historical trajectory data. Our system

first checks the parameter of temporal range in the query. If the
temporal range overlaps with multiple partitions, our system breaks
the query into several small queries, to each data partitions and
execute them in parallel.

4. TRAJECTORY ST-INDEXING

In this section, we present in details about the trajectory spatio-
temporal indexing module. This module has two main components:
1) Spatio-temporal trajectory storage and 2) Spatio-temporal query
processing.
Spatio-temporal Trajectory Storage. In this component, the sys-
tem reads the cached trajectory data from the Redis server and store
them into different spatio-temporal partitions. The main difference
between the cloud-based data management system and the conven-
tional spatio-temporal data management system, is that, instead of
building an index to support the spatio-temporal query, our cloud-
based system actually create an additional copy of the trajectory
data and store them in the way that the spatio-temporal query can
be executed efficiently. There are two main reasons to support our
design: 1) the storage cost is much cheaper comparing to the com-
puting in the cloud, e.g., it’s less than 0.1 USD per 100TB/month 5.
And 2) the original trajectory data is stored in Azure Table, which is
not efficient to access them in a random way, which may generated
by a spatio-temporal query.

The main idea of the process is demonstrated in Figure 7. We
first build a static spatial index over the trajectory data, e.g., equal-
sized grids in our system. An Azure Table is created for each spa-
tial partition in the index. Then, the partial trajectories that belong
to the same spatial partition are grouped and inserted in the corre-
sponding table. During that process, the partial trajectories are par-

5https://azure.microsoft.com/en-us/pricing/details/storage/

titioned based on the timestamps of their GPS points, e.g., by one
hour or one day. Finally, the GPS points are stored as table entries,
where the partitionkey is the temporal range, e.g., “2016-06-
25”, and the rowkey is the combination of timestamp and the trip
ID, e.g., “2016-06-25 10:22:32@Trip23112”. The main reasons to
design the rowkey in this way are: 1) simply using the timestamp
as the rowkey may cause the conflict in keys, where two GPS
points in the same spatial region are generated at the same time;
and 2) the rowkey still preserves the temporal information, which
allows us to leverage the range query over rowkey to retrieve the
GPS points in a temporal range efficiently.
Spatio-temporal Query Processing. To answer a spatio-temporal
query using our system, we first exam the spatial range in the query
to see the number of spatial partitions are covered. The system,
then, retrieves the data from different spatial partitions in parallel.
For each retrieval process in a spatial table, the temporal range of
the query is also broken into different temporal partitions and ex-
ecuted in parallel. Note here, although the rowkey in the spatio-
temporal table contains both the timestamp and trip ID, we can still
use the range rowkey search operation, as the Azure Table com-
pares the rowkey strings from the left to right during the range
query processing. Finally, the results are returned by aggregating
all the data obtained from different spatial table and temporal par-
titions.

As a result, it is also very clear that the granularities of spatial
partition and temporal partition have significant impacts on effi-
ciency of the data storage and query process, which we will demon-
strate in details in the experiment section.

5. TRAJECTORY MAP-MATCHING

Trajectory map-matching projects the raw GPS points in a trajec-
tory on a spatial network, converting a sequence of latitude/longi-
tude coordinates to a sequence of road segment IDs. Map-matching
is a vital and fundamental process for many urban applications,
e.g., traffic speed/volume inference, vehicle navigation, and des-
tination inference.

To support these urban applications online, it is very challenging
to provide the map-matching service in a real-time manner. It is
due to two main reasons: 1) the volume of the traffic is huge, we
usually get tens of thousands of real-time trajectory updates in the
system and each trajectory updates contains around ten GPS points;
and 2) the task of map-matching itself is very time-consuming, e.g.,
it took us two weeks to perform the map-matching task on two
months’ trajectory data containing 3,500 taxis from City of Tianjin
over a server computer with Intel Xeon E5 CPU @ 2.4GHz proces-
sor, and 128 GB RAM [11].

To support the map-matching service efficiently and online, we
leverage the distributed streaming computing platform in Azure,
i.e., Storm, to speed up the map-matching process. Figure 8 gives
an overview of the Storm topology in our system, which includes

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1 2 3 4 5

× 1000

R
es

po
ns

e
T

im
e

(m
s)

Time Range (h)

Blob
Table

(a) Blob VS. Table.

 2

 3

 4

 5

 6

 7

 8

0.5 1 6 12 24

× 100

In
se

rt
 T

im
e

(s
)

Partition Key (h)

(b) Insertion wrt. Partition Sizes.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.5 1 6 12 24

× 1000

R
es

po
ns

e
T

im
e

(m
s)

Partition Key (h)

TimeRange-1h
TimeRange-3h
TimeRange-5h

(c) Response wrt. Partition Sizes.

Figure 9: Trajectory Store & ID-Temporal Query Experiments.

Preprocessing

Bolt

Map-

Matching Bolt

Map-

Matching Bolt

Report

Bolt
ShuffleGrouping GlobalGroupingSpout

Raw Trajectories

Cleaned

Trajectories

Map-Matched

Trajectories

Table

Storage

Preprocessing

Bolt

…

…Cleaned

Trajectories

Road Network

Graph Storm-based Map-Matching

…

…

ShuffleGrouping

Figure 8: Storm Topology of Map-matching Pipeline.

four types of components:

• Spout. The spout reads raw trajectories from Redis server
(in the real-time scenario) or Azure Table (in the offline sce-
nario), and then emits the raw trajectories to the preprocess-
ing bolts using the shuffle grouping mechanism.
• Preprocessing Bolt. The preprocessing bolt filters the noisy

GPS points from the raw trajectory to remove the outlier
points. In this bolt, we use a heuristics-based outlier detec-
tion method [1]. After that, each cleaned trajectory is emitted
to map-matching bolt using shuffle grouping mechanism.
• Map-Matching Bolt. The map-matching bolt takes the

cleaned trajectory and the road network and maps each
GPS point onto the corresponding road segment. In this
bolt, we use an interactive-voting based map matching al-
gorithm [12], as it does not only consider the spatial and
temporal information of a GPS trajectory but also devise a
voting-based strategy to model the weighted mutual influ-
ences between GPS points. After, the map-matching task is
done, the result is emitted to the report bolt.
• Report Bolt. The report bolt caches the map-matched tra-

jectories and writes the results in batch to a Redis server
or Azure Table to reduce the high I/O overhead of frequent
small writings.

The advantages to parallel the map-matching computing in tra-
jectory level, as in our framework, are: 1) it makes the system more
flexible, as it is much easier to transplant any other map-matching
algorithms in our system. We only need to import the algorithm
into the map-matching bolt, and all the inputs and outputs are the
same. 2) It is much easier for the spout to distribute the workload
to different bolts, as the trajectories received we got in the spout
are processed by the storage module and are always separated by
vehicle IDs or trip IDs.

After the map-matching process is done for the trajectories, the
trajectory data is converted into a sequence of road segment ids.

Our system also builds an inverted index for each road segment to
store the IDs and corresponding timestamps of the trajectories that
have passed it. In this way, we are able to answer the temporal
query like, “what trajectories have passed road segment ri yester-
day afternoon?”.

6. EXPERIMENT EVALUATION

In this section, we provide a set of experiments to 1) demon-
strate the efficiency of our trajectory data management system, and
2) share some lessons we learn during the parameter tuning.

6.1 Trajectory Storage
The first set of experiments demonstrates the efficiency on the

trajectory storage module. We first show the performance differ-
ences between Azure Blob and Azure Table. After that, we show
the efficiency differences on data insertion and querying with dif-
ferent partitionkey settings in Azure Table.
Efficiency of Blob & Table. Figure 9a gives the performance of
the ID-temporal query on the Blob storage and Table storage, while
increasing the query time range. Each blob file and Azure partition
contains one-day trajectory information. There are two insights we
can get in this figure: 1) the query performance is better when the
query range is smaller, as more data is accessed and transferred
with a larger temporal range; and 2) Azure Table performs much
faster (over 2 times faster) and more consistent than the Azure Blob.
As a result, we use Azure Table to store the trajectories.
Data Storage Performance. In this experiment, we test the inser-
tion performance with different granularities of partitionkey,
from half hour to one day. In this experiment, 100 one-day tra-
jectories are inserted. We can see from the figure that with a
larger partitionkey the insertion performance increases significantly
first, and then becomes more consistent. It is because with a large
partitionkey more data can be inserted in one batch. On the
other hand, when the partitionkey gets larger the performance
bottleneck changes to the network communication.
Different Temporal Ranges. Figure 9c gives the perfor-
mance ID-temporal query evaluation with different granularities of
partitionkey. We can see that in general, the data schema with
smaller partition performs better, as in the large partition the cloud
storage, the system needs to scan more table entities to retrieve the
query results.

As a result, there is a trade-off on choosing the size of the
partitionkey, where a large partition performs better in data
storage and loading phase. However, the query performance de-
creases significantly with large partitions.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

1 3 5 10 20

× 1000
In

se
rt

 T
im

e
(s

)

Grid Size (km*km)

(a) Insertion wrt. Grid Sizes.

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

0.5 1 6 12 24

× 1000

In
se

rt
 T

im
e

(s
)

Partition Key (h)

(b) Insertion wrt. Temporal Sizes.

 0

 1

 2

 3

 4

 5

 6

 7

1 3 5 10 20

× 1000

R
es

po
ns

e
T

im
e

(m
s)

Grid Size (km*km)

TimeRange-1h
TimeRange-3h
TimeRange-5h

(c) Query wrt. Temporal Ranges.

 0

 5

 10

 15

 20

 25

 30

 35

1 3 5 10 20

× 1000

R
es

po
ns

e
T

im
e

(m
s)

Grid Size (km*km)

SpatialRange-1km
SpatialRange-5km

SpatialRange-20km

(d) Query wrt. Spatial Ranges.

Figure 10: Spatio-temporal Indexing & Query Processing.

 100

 200

 300

 400

 500

 600

 700

2 4 6 8 10 12

T
im

e
(m

s)

Number of Bolts

DataNode-5
DataNode-10
DataNode-15

(a) Bolts Per Worker.

 0

 100

 200

 300

 400

 500

1000 2000 3000 4000 5000 6000

T
im

e
(s

)

Number of Trajectories

DataNode-5
DataNode-10
DataNode-15

(b) Trajectory Size.

 0

 200

 400

 600

 800

 1000

 1200

 1400

20 40 60 80 100 120
T

im
e

(s
)

Time Length (min)

DataNode-5
DataNode-10
DataNode-15

(c) Trajectory Length.

 0

 50

 100

 150

 200

 250

20 40 60 80 100 120

T
im

e
(s

)

Sample Rate (s)

DataNode-5
DataNode-10
DataNode-15

(d) Trajectory Sample Rate.

Figure 11: Storm-based Map-Matching Experiments.

6.2 Trajectory ST-Indexing
This set of experiments illustrates the efficiency of trajectory

spatio-temporal indexing module. We first demonstrate the sys-
tem efficiency on indexing the trajectory data with different spatial
and temporal granularities. Then, we evaluate the spatio-temporal
query performances with different query parameters.
Trajectory Data Indexing. Figure 10a gives the data insertion per-
formance, when we divide the spatial area into different sized grid
cells, and the partitionkey is set as one hour. We can see that
the insertion performance is better when the grid size is bigger, as
more trajectories can be inserted in one batch. Figure 10b demon-
strates the efficiency on different partitionkey, where the grid
size is fixed as 3 km2. Similarly, the insertion time decreases, when
the partition is bigger.
Spatio-temporal Query Processing. Figure 10c gives the ef-
ficiency results of spatio-temporal queries with different tem-
poral ranges and the same spatial range (i.e., 3 km2). The
partitionkey is set as one hour. In this experiment, the re-
sponse time first decreases, as in 1 km2 grid setting, more tables
need to be accessed to answer the query. On the other hand, the
performance generally increases with larger grid sizes, as there are
more candidate trajectories to be filtered in each grid cell. Also,
the query with larger temporal range has a higher response time, as
more partitions need to be accessed and more data is transferred via
the network.

Figure 10d gives the efficiency evaluation on the spatio-temporal
queries with different spatial areas and the same temporal range
(i.e., one hour). It is clear that the query with smaller spatial range
performs better, as less data is accessed and transferred. It is also
interesting to see that the queries usually performs the best, when
the grid size is similar to the spatial range size in the query. It is
because, if the grid size is smaller, more tables need to be accessed.
On the other hand, if the grid size is bigger, more data need to be
filtered during the process.

As a result, in order to serve the spatio-temporal queries and in-
sertions in a more efficient way, there are many factors need to be
considered, such as the most frequent spatial and temporal range of
the query and the granularity of the batch insertion sizes.

6.3 Storm-based Map-Matching
In this set of experiment, we provide a set of experiments on the

efficiency of the map-matching process over the Storm platform.
We first test the settings in Storm to find out the optimal paral-
lelism settings. After that, we provide a set of the map-matching
efficiency experiments on different sizes of cloud clusters, with re-
spect of different trajectory sizes, average lengths and sample rates.
Parallelism Degree. When designing the parallelism of Storm
topology, there are three important parallelism factors, a user need
to specify: 1) number of data nodes, which is essentially the size of
computing clusters in the cloud, each node contains a 4-core CPU.
2) number of workers, which can be analogized as a computing
process. And 3) number of bolts, which is the number of threads
running in one process (i.e., worker in this context). It is clear
that to fully utilize the computing power of a cluster, the number
of worker should greater than the number of data nodes in Storm.
However, the optimal parameter of bolts per worker is highly de-
pend on the application scenario.

Figure 11a presents the results on our map-matching module us-
ing Storm. In each experiment, we performed the map-matching
task on 6000 trajectories with average length of one hour. The ex-
periments are done with different number of bolts per worker with
three different cluster sizes (i.e., 5, 10 and 15). It is clear in the
figure that the cluster has higher number of data nodes always per-
forms better. Moreover, the efficiency of the system improves sig-
nificantly, when we change two bolts per worker to four bolts per
worker. It is because each CPU in our cluster has four cores. In the
two bolts’ setting, the parallel capability is not fully exploited. On
the other hand, the map-matching efficiency decreases, when we

(a) Example of Plate Temporal Query

(b) Example of Spatio-temporal Query

(c) Example of OD-based Query

Figure 12: Real-time Taxi Data Management System.

put more than eight bolts per worker in the system. It is because
more bolts now introduces the overhead during the context switch-
ing. As a result, to achieve a reasonable parallelism in Storm, the
user should have the number of bolts per worker as least as the same
number of cores in one data node in the cluster.

In the remaining experiments, we set the number of bolts per
worker as eight.
Different Number of Trajectories. In this experiment, we test
the efficiency of the map-matching module with different number
of trajectories. Figure 11b illustrates the performance, where with
more trajectories the processing time increases. One interesting
insight here is that, with the total number of trajectories less than
4,000, the performance improvement of the 15-data node cluster is
very limited. However, an extra five data node would cost more
than 2,500 USD per month. Hence, in that scenario, a 10-node
cluster is a more economical solution.
Different Length of Trajectories. In this experiments, we present
the map-matching efficiency with different length of the trajecto-
ries, where each experiment performs the map-matching for 6,000
trajectories. It is clear from Figure 11c that with longer trajecto-
ries, map-matching task takes more time and the bigger cluster has
lower processing time.
Different Trajectory Sample Rates. In Figure 11d, we present
the map-matching efficiency with different trajectory sample rates
(the average temporal intervals between consecutive GPS points),
where each experiment performs the map-matching for 1,000 one-
hour trajectories. We can see that with trajectories with less interval
time take more time, as there are more points to perform the map-
matching.

7. CASE STUDIES

With the availability of the trajectory data management system
in Azure, many urban applications can be built with much fewer
effort. In this section, we demonstrate three case studies we built
using our system: 1) a real-time taxi data management system, 2) a
real-time traffic data modeling system, and 3) a resource allocation
system based on trajectories.

7.1 Real-time Taxi Data Management System
The taxi data management system we built based on the real-time

taxi trajectory updates from 7,500 taxi cabs in the City of Guiyang,
China. In this system, we create an Azure Cloud Service to query
the real-time taxi trajectories and return the result in JSON format
at the back-end. A web interface is built as an Azure Web App as
the front-end, which supports three functions:
Plate Temporal Query. It is used to find out what did a taxi travel

in a given time range. As demonstrated in Figure 12a, the user can
specify a taxi plate number and a temporal range, the system will
retrieve the trajectory data of the taxi within the given temporal
period. To improve the response time for the real-time usage, the
system returns the most recent one hour result from the Redis server
directly, while the historical results are read from the Azure table.
Spatio-temporal Query. This is used to get the taxi cabs and their
trips that fall in a given spatio-temporal range, which is very useful
for the users to book the taxi service. As shown in Figure 12b, the
user can draw a rectangle on the map as the spatial range, and input
a temporal range from the box. Then, the system returns all the
taxi cabs and their trajectories within the specified spatio-temporal
range.
OD-based Query. This query is to find out the trips of the taxis,
give an OD (i.e., origin and destination) pair. This is very useful to
find out the taxi if a passenger lost something in a cab, and can only
know her origin and destination. As demonstrated in figure 12c, the
user can select two locations as origin and destination and two time
windows corresponding to each location. The system returns all the
qualified trips, where essentially the back-end system executes two
spatio-temporal queries to find the plate numbers and the times-
tamps, and then executes another plate-temporal query to retrieve
the detailed trajectories.

7.2 Real-Time Traffic Modeling System
The real-time traffic modeling system aims to provide the three

important information on each road segment in a city: 1) travel
speed, 2) traffic volume and 3) emission levels. To be able to infer
any of the three information, it is vital to be able to perform the map
matching task in the real-time manner. In this system, our system
constantly gets the real-time trajectory updates from over 7,000 taxi
and perform all the tasks in less one minute, using a 30-node Storm
system in Microsoft Azure.

In the three aforementioned three tasks, travel speed calculation
is the most fundamental one. After we get the map-matched trajec-
tories, we can calculate the average travel speed for the road seg-

r

2

Tr

1

r

3

r

1

p

1

p

2

r

4

p

3

r

2

r

3

r

1

v

1

v

2

r

4

v

3

v

4

v

4

v

6

v

5

v

7

Tr

2

Tr

3

r

1

: (v

1

, v

2

, v

4

)

r

2

: (v

4

, v

5

, v

6

)

r

3

: (v

5

, v

7

) r

4

: (v

2

, v

3

)

v

5

Figure 14: Travel Speed Inference.

Pre-processing

Location Set

Mining

Optimal

Solution

Map-Matched

Trajectories

Spatial Indexing

Inverted Trajectory

Index

Vertex-vertex

Index

Approx.

Solution

Users

Mining

Parameters

k Location

Candidates

Interactive

Process

(a) System Overview

(b) Solution Generation (c) Solution Explorer

Figure 13: Trajectory-based Resource Allocation System.

ments covered by the trajectory data received currently. As shown
in Figure 14, three vehicles traveled four road segments r1, r2, r3
and r4, generating three trajectories Tr1, Tr2, and Tr3. After
map-matching, each point from a trajectory is mapped onto a road
segment. Then, we can calculate the travel speed for each point
based on Equation 1.

v1 =
Dist(p1.l, p2.l)

|p2.t− p1.t|
(1)

where Dist is a function calculating the road network distance be-
tween two points. Thus, we can compute the average travel speed
of a road segment as Equation 2.

v = Σm
i
vi
n

(2)

After that, we can infer the travel speed of the road segment with-
out any trajectories using a matrix decomposition model [5]. Then,
we can infer the traffic volume and emission levels of each road
segment using a graphic model [13]. As illustrated in Figure 15,
we build a real-time traffic modeling system using the calculated
travel speed information. The system models real-time traffic con-
ditions on each road segment and infers city-wild gas consumption
and pollution emissions of vehicles.

7.3 Trajectory-based Resource Allocation
The trajectory-based resource allocation system finding a set of

k locations on a road network, which, collectively, traversed by
the maximum number of unique trajectories in a given region.
This application is vital to many resource allocation applications,
like advertisement placement, charging/gas station placement, and
chained business location selection.

As shown in Figure 13a, the system requires a large set of map-
matched trajectories, as well as the inverted trajectory index, which
are generated by our trajectory data management system. As a re-
sult, we are able to build an interactive visual analytic system [14,

Figure 15: Demonstration of Traffic Modeling System.

15] that supports solution generation and solution explorer.
Solution generation. As shown in Figure 13b, a user can select
an arbitrary spatial range to place the stations/advertisements and
specify the number of stations/advertisement she needed. The sys-
tem will automatically mine the underlying trajectory data set and
provide a solution, e.g., with 5 location suggestions on the map.
The user can interact with the solution to add or remove some un-
qualified locations to generate new solutions, like the ones on the
bottom.
Solution explorer. Figure 13c demonstrates the solution explorer,
where the system provide more different views to help the user to
select the most suitable location combinations.

8. RELATED WORKS
In this section, we present the related research in the following

three aspects: 1) trajectory querying & mining, 2) trajectory map-
matching, and 3) parallel spatial computing platforms.
Trajectory Query & Mining. The availability of location-
acquisition techniques has enabled the collection of massive trajec-
tory data. With the massive trajectory data, many different spatio-
temporal indexes have been proposed to support spatio-temporal
queries, detailed in [16, 17]. With these efficient indexes and
accessing methods, different trajectory-based mining applications
emerge [1][18][19][20]. [18] studies the problem of discovering
the gathering patterns from trajectories. [19] proposes to estimate
the travel-time of a path in real time in a city based on the GPS
trajectories of vehicles. [20] studies a query which finds the most
frequent path of user-specified source and destination from histor-
ical trajectories. However, all of the existing accessing methods
and mining applications are implemented in a centralized way. In
our system, we leverage the existing indexes in Azure storage and
make them support the spatio-temporal query efficiently. The most
similar industrial work are [21, 22], which build spatial index over
the NoSQL database. However, these work only support spatial
objects, rather than trajectories.
Trajectory Map-Matching. Map-matching is a very impor-
tant function in our system. The existing map-matching al-
gorithms can be categorized based on their models in to four
groups [1]: 1) geometric-based [23], 2) topological-based [24],
3) probabilistic-based approaches [25] and 4) other advanced tech-
niques [12]. However, the goal in our system is not proposing a new
map-matching algorithm, but to speed the service up using parallel
streaming system to support the real-time urban applications. The
closest work with us is [26], which uses Hadoop framework to par-
allel the map-matching algorithms. However, in our system Storm
is a more suitable platform, as it is able to handle the streaming
GPS data and provide the real-time service.
Parallel Spatial Computing Platforms. The first attempt to
involve Hadoop in spatial computing is done by Parallel SEC-

ONDO [27], which combines Hadoop with SECONDO. Hadoop-
GIS [7] utilizes global partition indexing and customized on-
demand local spatial indexing to efficient supports multiple types
of spatial queries. SpatialHadoop [8] is comprehensive extension
to Hadoop, which has native support for spatial data by modify-
ing the underlying code of Hadoop. Most recently, due to the high
IO cost in Hadoop, there are some systems, e.g., SpatialSpark [9]
and GeoSpark [10], try to support large scale spatial queries and
joins in Spark framework. However, all of above systems only
support spatial query and mining, which cannot directly support
spatio-temporal data, such as trajectories. The closest work to us
is [28], which can answer trajectory spatio-temporal range queries
using Hadoop framework. Compare to [28], our system supports
more query types and has the ability to handle the real-time trajec-
tory updates.

9. CONCLUSION
This work presents a holistic cloud-based trajectory data man-

agement system, which serves as the foundation of many urban
applications. The system is able to answer ID-Temporal query,
spatio-temporal query and trajectory map-matching in an efficient
and real-time way. Our system leverages the storage components
in Azure, including Azure Blob, Azure Table and Azure Redis. We
design and implement the storage component in the way to support
the queries more efficiently. Also, we utilize the Apache Storm,
the distributed streaming system in Azure to perform efficient and
real-time map-matching service.

We performed extensive experiments the real trajectories data.
We shared the lessons during our design and implementation of
the system, which we believe are very useful for our community to
shift the spatio-temporal computing and mining over the cloud. Our
system has been actually used in many real urban computing appli-
cations internally. With the availability of the system, we signifi-
cantly improve the efficiency and usability. As the future work, we
will test more data-driven indexes such as R+ trees and Quad-tree,
as well as support more types of trajectory queries and operations.
Ultimately, we would like to incorporate the trajectory computing
as a standard service in Microsoft Azure Cloud.

10. REFERENCES
[1] Y. Zheng, “Trajectory data mining: an overview,” ACM Transactions

on Intelligent Systems and Technology (TIST), vol. 6, no. 3, p. 29,
2015.

[2] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 5, no. 3, p. 38, 2014.

[3] Y. Zheng, F. Liu, and H.-P. Hsieh, “U-air: when urban air quality
inference meets big data,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2013, pp. 1436–1444.

[4] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li,
“Forecasting fine-grained air quality based on big data,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2015, pp.
2267–2276.

[5] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 25–34.

[6] A. M. Hendawi, J. Bao, M. F. Mokbel, and M. Ali, “Predictive tree:
An efficient index for predictive queries on road networks,” in 2015
IEEE 31st International Conference on Data Engineering. IEEE,
2015, pp. 1215–1226.

[7] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop gis: a high performance spatial data warehousing system

over mapreduce,” Proceedings of the VLDB Endowment, vol. 6,
no. 11, pp. 1009–1020, 2013.

[8] A. Eldawy and M. F. Mokbel, “A demonstration of spatialhadoop: an
efficient mapreduce framework for spatial data,” Proceedings of the
VLDB Endowment, vol. 6, no. 12, pp. 1230–1233, 2013.

[9] S. You, J. Zhang, and L. Gruenwald, “Spatial join query processing
in cloud: Analyzing design choices and performance comparisons,”
in Parallel Processing Workshops (ICPPW), 2015 44th International
Conference on. IEEE, 2015, pp. 90–97.

[10] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing
framework for processing large-scale spatial data,” in Proceedings of
the 23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2015, p. 70.

[11] Y. Li, Y. Zheng, S. Ji, W. Wang, and Z. Gong, “Location selection for
ambulance stations: a data-driven approach,” in Proceedings of the
23rd SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2015, p. 85.

[12] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun, “An
interactive-voting based map matching algorithm,” in Proceedings of
the 2010 Eleventh International Conference on Mobile Data
Management. IEEE Computer Society, 2010, pp. 43–52.

[13] J. Shang, Y. Zheng, W. Tong, E. Chang, and Y. Yu, “Inferring gas
consumption and pollution emission of vehicles throughout a city,” in
Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2014, pp.
1027–1036.

[14] D. Liu, D. Weng, Y. Li, Y. Wu, J. Bao, Y. Zheng, and H. Qu,
“SmartAdP: Visual Analytics of Large-scale Taxi Trajectories for
Selecting Billboard Locations,” in The IEEE Conference on Visual
Analytics Science and Technology (IEEE VAST 2016). IEEE
Computer Society, 2016.

[15] Y. Li, J. Bao, Y. Li, Y. Wu, Z. Gong, and Y. Zheng, “Mining the Most
Influential k-Location Set from Massive Trajectories,” in
SIGSPATIAL. ACM, 2016.

[16] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, “Spatio-temporal
access methods,” IEEE Data Eng. Bull., vol. 26, no. 2, pp. 40–49,
2003.

[17] L.-V. Nguyen-Dinh, W. G. Aref, and M. Mokbel, “Spatio-temporal
access methods: Part 2 (2003-2010),” 2010.

[18] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang, “On discovery of
gathering patterns from trajectories,” in ICDE, 2013, pp. 242–253.

[19] Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in SIGKDD, 2014, pp. 25–34.

[20] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-based
most frequent path in big trajectory data,” in SIGMOD, 2013, pp.
713–724.

[21] “Geocouch,” https://github.com/couchbase/geocouch/.
[22] “neo4j/spatial,” https://github.com/neo4j/spatial/.
[23] J. S. Greenfeld, “Matching gps observations to locations on a digital

map,” in Transportation Research Board 81st Annual Meeting, 2002.
[24] H. Yin and O. Wolfson, “A weight-based map matching method in

moving objects databases,” in Scientific and Statistical Database
Management, 2004. Proceedings. 16th International Conference on.
IEEE, 2004, pp. 437–438.

[25] O. Pink and B. Hummel, “A statistical approach to map matching
using road network geometry, topology and vehicular motion
constraints,” in 2008 11th International IEEE Conference on
Intelligent Transportation Systems. IEEE, 2008, pp. 862–867.

[26] J. Huang, S. Qiao, H. Yu, J. Qie, and C. Liu, “Parallel map matching
on massive vehicle gps data using mapreduce,” in High Performance
Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing (HPCC_EUC).
IEEE, 2013, pp. 1498–1503.

[27] J. Lu and R. H. Güting, “Parallel secondo: boosting database engines
with hadoop,” in Parallel and Distributed Systems (ICPADS), 2012
IEEE 18th International Conference on. IEEE, 2012, pp. 738–743.

[28] Q. Ma, B. Yang, W. Qian, and A. Zhou, “Query processing of
massive trajectory data based on mapreduce,” in Proceedings of the
first international workshop on Cloud data management. ACM,
2009, pp. 9–16.

