DNN-Based Prediction Model for Spatio-Temporal Data

Junbo Zhang!, Yu Zheng!***, Dekang Qi*t, Ruiyuan Li>t, Xiuwen Yi*1
'Microsoft Research, Beijing, China
2School of Computer Science and Technology, Xidian University, China
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
4School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
{junbo.zhang, yuzheng, v-deq, v-ruiyli, v-xiuyi}@microsoft.com

ABSTRACT

Advances in location-acquisition and wireless communica-
tion technologies have led to wider availability of spatio-
temporal (ST) data, which has unique spatial properties (i.e.
geographical hierarchy and distance) and temporal proper-
ties (i.e. closeness, period and trend). In this paper, we
propose a Deep-learning-based prediction model for Spatio-
Temporal data (DeepST). We leverage ST domain knowl-
edge to design the architecture of DeepST, which is com-
prised of two components: spatio-temporal and global. The
spatio-temporal component employs the framework of con-
volutional neural networks to simultaneously model spatial
near and distant dependencies, and temporal closeness, pe-
riod and trend. The global component is used to capture
global factors, such as day of the week, weekday or week-
end. Using DeepST, we build a real-time crowd flow fore-
casting system called UrbanFlow!. Experiment results on
diverse ST datasets verify DeepST’s ability to capture ST
data’s spatio-temporal properties, showing the advantages
of DeepST beyond four baseline methods.

Keywords

Deep Learning; Spatio-Temporal Data; Prediction

1. INTRODUCTION

Advances in location-acquisition and wireless communica-
tion technologies have resulted in massive amounts of data
with spatial coordinates and timestamps, called ST data, in
a diverse range of domains, including transportation, envi-
ronmental science, communication systems, and social net-
working services [4]. Being different from text and image
data, ST data has two unique attributes: 1) spatial proper-
ties, which consists of a geographical hierarchy and distance,
and 2) temporal properties, which consists of closeness, pe-
riod and trend.

*Yu Zheng is the correspondence author of this paper.
"The research was done when the third, fourth and fifth
authors were interns in Microsoft Research.

"http:/ /urbanflow.sigkdd.com.cn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGSPATIAL’16 October 31 - November 03, 2016, Burlingame, CA, USA
(© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4589-7/16/10.

DOL: http://dx.doi.org/10.1145/2996913.2997016

1) Spatial properties: First, locations at a higher level of ge-
ographical hierarchy have a coarser granularity, and the ter-
ritory of a parent node is composed of those of its children.
For example, a tourist attraction is located in a district,
which further belongs to a city. Second, there is a geograph-
ical distance between two locations, which can measure the
correlation between them. For instance, near locations are
more similar than distant ones, according to the first law of
geography.

2) Temporal properties: The timestamp of each instance in
an ST dataset allows us to order instances chronologically,
generating sequential properties where adjacent timestamps
usually have a higher similarity than distant ones. Like-
wise, ST data usually has a certain periodic pattern, which
repeats with a certain frequency. For instance, traffic condi-
tions during morning rush hours may be similar on consec-
utive workdays, repeating every 24 hours.

Learning an effective prediction for ST data will signif-
icantly contribute to a variety of urban applications, such
as air quality forecasting [5], crowd flows prediction [1],
and bike rent/return estimation in bike-sharing systems [3].
However, it is very challenging to capture all spatial and
temporal properties simultaneously. To address these chal-
lenges, we propose a deep neural network (DNN)-based pre-
diction model (entitled DeepST) which includes two key
components: spatio-temporal and global. The contributions
of our work are two-fold:

e We design a novel deep learning architecture for spatio-
temporal data using domain knowledge and propose employ-
ing 1) temporal properties to select appropriate timestamps,
for modeling temporal closeness, period, and trend; 2) con-
volutions to capture spatial near and distant dependencies;
3) early and late fusions to fuse similar ST data as well as
the global information.

e We apply DeepST to predict citywide crowd flows, and
develop a real-time flow forecasting system (called Urban-
Flow), which can effectively monitor fine-grained crowd flows
and provide the future ones in cities.

/ Historical Traj —7" DeepST macdel / Real-time Traj / Viswalization |

+

: — | :
[l’ ‘aleulating Flows | |/ Hestmaps
] E

“Cenerating

Calculating Flows | 3
v] L r
J Crowd Flows f Predicting I-— Crowd Flows

| Training DeepST |— /' Future Flows f—n: Concatenating == Al Flaws A&

{a) Offline Training b} Omline Forecasting {c) Monitoring

Figure 1: System Framework. Traj: trajectories.

UrbanFiow

(a) User interface of UrbanFlow

(¢) Heatmaps m past & future

Figure 2: UrbanFlow: A real-time crowd flow forecasting system

1.1 System Framework

The framework of the system is shown in Figure 1. A case
study about crowd flows prediction is used through the pa-
per. There are three major components in our framework:
offline training, online forecasting, and website monitoring.
In offline training, the collected trajectories (e.g., taxi) from
a city are fed into a “Calculating Flows” module that out-
puts two types of flows (see Definition 2). These historical
flows are then used to learn the DeepST model, which will
be introduced in Section 2.2. In online forecasting, start-
ing with calculating crowd flows from real-time trajectories,
the learned DeepST model is used to predict future flows
that are concatenated with real-time flows later. In the
last component, in order to monitor intuitively, we gener-
ate heatmaps from real-time and predicted crowd flows that
can show the global status in the city. At the same time,
curves in a single region show more detailed flows. Section 2
will introduce the details of website monitoring.

1.2 Demonstration of the System

The system is built as a website, named UrbanFlow. Users
can view real-time and forecasting crowd flows in cities. The
user interface of the system is shown in Figure 2a. Here, we
apply UrbanFlow to the area of Guiyang City, China. The
top-right corner of the website shows the buttons which can
switch between different types of flows. A user can select any
grid (representing a region) on the website and click it to see
the region’s detailed flows, as shown in Figure 2b where blue,
black, and green curves indicate flows of yesterday, past,
and future times at today, respectively. The bottom of the
website shows a few sequential timestamps. The heatmap
at a certain timestamp will be shown in the website when
a user clicks the associated timestamp. Intuitively, the user
can watch the movie-style heatmaps (Figure 2¢) by clicking
“play button” at the bottom-left of Figure 2a.

2. MODELS

In this section, we first formulate the ST prediction prob-
lem, and then introduce our DeepST.

2.1 Formulation of ST Prediction Problem

DEFINITION 1 (REGION). There are many definitions of
a location in terms of different granularities and semantic
meanings. In this study, we partition a city into an M X N

grid map based on the longitude and latitude where a grid
represent a region.

DEFINITION 2 (MEASUREMENTS). There are many dif-
ferent types of measurements in a region for different ST
applications, such as crowd flows [1], air quality [5], bike
rent/return [3]. In this study, we use crowd flows as mea-
surements for the case. Typically, the movement of crowds
can be represented by a collection of trajectories P. For a
grid (m,n) that lies at the m™ row and the n'" column, two
types of crowd flows at the k™" timestamp, namely in-flow,
out-flow, are defined respectively as

= Y0 i > Ugioa (mon) Agi € (myn)}]
TryeP
Attt = Y i 2 g € (myn) Agisr & (m,n)}|
Try P
where Ty : g1 — g2 — -+ — g|r,| Mmeans the trajectory

at the k" timestamp; g; means the geospatial coordinate;
gi € (m,n) means the point g; lies within grid (m,n); | - |
means the cardinality of a set.

At the k*" timestamp, in-flow and out-flow in all M x N
regions can be denoted as X, € R**MXN where (Xk)o,m,n =
in,m,n out,m,n
Ly s (Xk)1,mn = 27,
Formally, for a dynamlcal system over a spatial region
represented by a M x N grid map, there are () varying
measurements in each grid over time. Thus, the observation

at any time can be represented by a tensor X € R*M*N

PROBLEM 1. Given the historical observations Xy, fork =
0,---,t—1, predict X;.

2.2 DeepST

Figure 3 shows the architecture of DeepST, which is com-
posed of two components: spatio-temporal and global. As
illustrated in the bottom-left part of Figure 3, we feed all
historical observations into the spatio-temporal component.
According to temporal properties, different timestamps are
selected and concatenated together to model closeness, pe-
riod and trend, respectively. Taking closeness for example,
we use a convolution to merge X;_3, X;—2 and X;—1. The
outputs of closeness, period and trend are further combined
via early fusion, feeding them into a number of convolu-
tional layers. In the global component, we first get meta

data of the predicted time ¢, and transform it into a binary
vector, which is then fed into a block that contains one (or
a few) fully-connected layer(s). The outputs of the above
components are merged via late fusion followed by the Tanh
activation function. The predicted tensor at time ¢ is X..

| Late fusion followed by Tanh =
Conivolution spatio-temporal global
Convolution Fully-
Early fusion connected
L]
2 : 3 :] : layers
| Convolution | [Convolution | [Convolution |

I

F T T " Ry P T he 1 AS A E—— ' -
5""1"ﬂ,| :-2.«]' ""‘J ;.r-R;ﬂj}-Ep r-p“ -3 I -20] -1 II I III]
" trend — period_ i closeness | binary feature
" . . " Getting meta
Getting dependencies according to temporal properties i
Jc g \.Pl. cne k. < p P l dﬂ{a att
| l { P e————
Bt gutpur

> time
Figure 3: DeepST Architecture.

1) Getting Temporal Dependencies. For an ST pre-
diction problem, the input may be a very long sequence of
observations, for which it can be very challenging to learn
temporal and spatial properties in a single model. Further-
more, some timestamps in the sequence own higher correla-
tion than others for prediction. With ST domain knowledge,
we can effectively select these higher-dependent timestamps
to reduce input size. To the best of our knowledge, a time
series always has one, or two, or all of the following tem-
poral properties: 1) temporal closeness; 2) period; 3) trend.
Based on these insights, we can get the recent, near, and
distant timestamps from all given historical observations to
model temporal closeness, period and trend, respectively.
The closeness part is denoted as [X¢—;_, -, X¢—1] where
lc is the number of dependent timestamps in the closeness
part. Likewise, the period and trend parts are denoted as
[Xt—t,p> Xt—(1,~1)-p, "+ » Xt—p] where I, ls are numbers of
dependent timestamps in the period and trend parts, re-
spectively, and p and s are a fixed period (e.g., one-day)
and seasonal trend span (e.g., one-week), respectively.

2) Convolutions. Here, we leverage the convolutional op-
erator to capture spatial dependency. The input of the clas-
sical convolution is a tensor (e.g., RBG image), therefore it
can be written as f(W X +b) where * denotes the convolu-
tion operator followed by an activation f, and W and b are
the parameters. Figure 4 shows the convolutions that nat-
urally provide the capacity of capturing spatial dependen-
cies. We find that one convolutional layer can commendably
describe near dependency in spatial regions, and two convo-
lutional layers can further depict distant dependency. This
means more convolutions can capture much farther depen-
dency, and even city-wide dependency.

Conv Conv
sl '
s e 1 T]
o8 (8e T

Figure 4: Convolutions for capturing near and dis-
tant dependencies.

The closeness, period and trend parts are all fed into the
similar convolutional layer. With convolution, their outputs
are respectively

le
Y = ¢ (Z Wi« X+ bE”)

Jj=1

ZP
HY = f (Z WD s Xy + b,ﬁ”)
=1

ls
HY = f (Z W e X+ bg1>)

j=1

where * denotes the convolution operator; f is an activation
function, e.g. the rectifier f(z) := max(0, z) [2] in the paper;
W.(l)7 b are the parameters in the first layer. Hcm, Hél),

H" are the outputs of the first convolutional layer over
close, periodic, trend sequences, respectively.

3) Fusions. According to fusing time, there are two com-
mon types in DNN: early and late fusions, which have dif-
ferent functions and will be used to fuse different types of
ST data in our model.

(a) Early Fusion. To capture closeness, period and trend
all together, we employ early fusion followed by a convo-
lution layer which is good at fusing similar domains’ data.
The early fusion based convolution can be written as

H = f (W s HP + WP s« B + W s 5O 1)

where W) and b® are the parameters.

Afterwards, one can stack more convolutional layers onto
it. In our implementation, we continue to stack two convolu-
tional layers. Therefore, there are a total of 4 convolutional
layers in our current setting.

(b) Getting Meta Data € Late Fusion. Being different
from early fusion, late fusion is more adept at fusing different
domains’ data. Meta features can provide some global infor-
mation such as dayofweek, meteorological condition, which
are always beneficial to predict the crowd flows, air quality.
In our implementation, we get meta data (i.e. dayofweek,
weekday /weekend) as the global features for the timestamp
t. Let G+ be the meta feature vector at t, the late fusion can
be written as

X; = tanh (W, - Hye + We - Gy) (1)

where H; is the output of the spatio-temporal component
of Figure 3, W+ and W¢ are the parameters. tanh is a hy-
perbolic tangent that ensures the output values are between
-1 and 1. R

The loss function used is mean squared error: || X; — X¢||3.

3. EVALUATION

Models: According to different temporal dependencies, our
DeepST has 4 variants (i.e. C, CP, CPT, CPTM). Table 1
shows the detail of these 4 variants as well as 4 baselines.

Datasets: Table 2 shows the datasets used in our exper-
iment. a) TaxiBJ15: In-/out- flows are calculated from
taxi trajectories according to Definitions 1 and 2; b) Tax-
iGY16: In-/out- flows are calculated from taxi trajectories
in Guiyang; c) LoopGY16: Two types of traffic flows are
collected from loop detectors in Guiyang; d) BikeNYC14:
Bike rent/return numbers are collected from bike stations

Table 1: Description on Models

Models Description
Baselines

ARIMA autoregressive integrated moving average

SARIMA seasonal ARIMA

VAR vector autoregressive model

CNN convolutional neural networks, the input is X¢_1
DeepST

(@] temporal closeness sequence

CP C + periodic sequence

CPT CP + seasonal trend sequence

CPTM CPT + meta data

Note: Convolutions in DeepST and CNN have the similar setting.
There are a total of 4 convolutional layers, each of which has 64
feature maps with 3 x 3 kernels.

Table 2: Datasets

Dataset TaxiBJ15 TaxiGY16 LoopBJ15 BikeNYC14
Data type Taxi GPS Taxi GPS Loop detector Bike rent
Location Beijing Guiyang Guiyang New York
Start time 3/1/2015 3/18/2016 10/1/2015 4/1/2014
End time 6/30/2015 5/4/2016 4/1/2016 9/30/2014
Test set Last week Last week Last week Last 10 days

Training set others that are NOT in the test set

Time interval 0.5 hour 0.5 hour 0.5 hour 1 hour

Gird map size (32, 32) (32, 32) (32, 32) (16, 8)
Trajectory data

F#taxis/bikes 30,000+ 6,000+ 6,800+

#time intervals 5,760 2,304 8,832 4,392

in NYC. Each of them are divided into two parts: training
set and test set, shown in Table 2 in detail. We use a Min-
Maz normalization method to scale all data into the range
[—1,1].

Evaluation Metric: We measure our method by Root
Mean Square Error (RMSE) as

1
. 52
RMSE 2 EZ (vi — 3)

where ¥ and v are the predicted value and ground thuth,
respectively; z is the number of all predicted values.

3.1 Diverse ST Applications

We evaluate the proposed deep learning-based prediction
models on different ST datasets, as shown in Table 3. It is
easy to see that our DeepST models outperform 4 baselines
and CPTM is the best among them, thus demonstrating the
benefits of metadata.

Table 3: RMSE. The smaller, the better.

Models TaxiBJ15 TaxiGY16 LoopGY1l6 BikeNYC14
ARIMA 25.58 23.31 137.83 10.56
SARIMA 29.11 26.51 135.25 10.07
VAR 25.59 22.70 146.16 9.92
CNN 26.08 22.92 183.51 8.55

DeepST (ours)

(@] 23.63 22.09 132.26 8.39
CP 23.84 21.51 129.13 7.64
CPT 23.33 20.98 130.53 7.56
CPTM 22.59 19.97 130.25 7.43

3.2 Multi-step Ahead Prediction

One can use historical and near predicted future values
to predict farther values in the future, which is referred to
multi-step ahead prediction in this paper. Figure 5 shows
the related results on the dataset TaxiBJ15. DeepST here is
the best of 4 DeepST variants. It demonstrates that DeepST

perform best and can also effectively predict a sequence of
values in future.

v ARINA SARIMA e CNN e (i p

5 6 7 B 9 101312131415 56 17 181920 2121 23 24

OH-AHEAD STEP

Figure 5: Multi-step Ahead Prediction

3.3 More Data Much Better?

Here, we collect more taxi trajectories (more than 400
days from 2013 to 2016) in Beijing. The data in the last week
is used as testing data. We use previous 7 days, 14 days, ...,
427 days as training data to learn 61 DeepST models with
the same network setting, and evaluate them on testing data,
as shown in Figure 6. We can see that more data leads to
a lower error, which means that the data amount is very
important for deep neural networks.

20 YSAAAA = .
VN VY S A A A

N Yo

=] ~@om g
R L - M A B
b Bl S M

o1

TRAING DATA SIZE {# OF DAYS)
Figure 6: More training data

4. CONCLUSIONS

In this paper, we proposed a DNN-based prediction model
for ST data that can capture both temporal and spatial
properties at once. We apply it to building a real-time crowd
flows forecasting system called UrbanFlow which help users
monitor past crowd flows and predict future ones. We eval-
uate DeepST on a variety of ST prediction tasks, including
crowd flows, rent/return of bikes, traffic flows, finding that
its performance outperforms the 4 baselines.

5. ACKNOWLEDGMENTS

The work in this paper was supported by the National
Natural Science Foundation of China (Grant No. 61672399
and No. U1401258), and the China National Basic Research
Program (973 Program, No. 2015CB352400).

6. REFERENCES

[1] M. X. Hoang, Y. Zheng, and A. K. Singh. Forecasting
citywide crowd flows based on big data. ACM SIGSPATIAL
2016, October 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012.

[3] Y. Li, Y. Zheng, H. Zhang, and L. Chen. Traffic prediction
in a bike-sharing system. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, page 33. ACM, 2015.

[4] Y. Zheng, L. Capra, O. Wolfson, and H. Yang. Urban
computing: concepts, methodologies, and applications. ACM
Transactions on Intelligent Systems and Technology (TIST),
5(3):38, 2014.

[5] Y. Zheng, F. Liu, and H.-P. Hsieh. U-air: When urban air
quality inference meets big data. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1436-1444. ACM, 2013.

