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Abstract—Trajectory data is very useful for many urban ap-
plications. However, due to its spatio-temporal and high-volume
properties, it is challenging to manage trajectory data. Existing
trajectory data management frameworks suffer from scalability
problem, and only support limited trajectory queries. This paper
proposes a holistic distributed NoSQL trajectory storage engine,
TrajMesa, based on GeoMesa, an open-source indexing toolkit for
spatio-temporal data. TrajMesa adopts a novel storage schema,
which reduces the storage size tremendously. We also devise novel
indexing key designs, and propose a bunch of pruning strategies.
TrajMesa can support plentiful queries efficiently, including ID-
Temporal query, spatial range query, similarity query, and k-NN
query. Experimental results show the powerful query efficiency
and scalability of TrajMesa.

I. INTRODUCTION

With the proliferation of positioning technology, a large
number of trajectories have been generated. To utilize such
huge trajectories, various trajectory queries have been pro-
posed: 1) ID temporal query, which retrieves the trajectories
of a given moving object within a specified time range, is
used frequently in package tracking services; 2) spatial range
query, which finds the trajectories travelling through a given
spatial range, can be used to discover reachable areas [1];
3) similarity query, which returns the trajectories similar to
a given trajectory, would help police to detect illegal parking in
streets [2]; and 4) k-NN (Nearest Neighbour) query, which
finds k trajectories that are most similar to a given trajectory,
can investigate driving habits [3].

It is desirable for a scaleable unified trajectory storage
engine to support all of these queries efficiently. Centralized
solutions [4] are based on a single machine, thus could not
cope with such huge trajectories obviously. Most recently,
there have emerged many distributed in-memory trajectory
data management frameworks, e.g, [5, 6]. However, they still
suffer from several limitations. First, these frameworks load
all trajectories into memory. They require high-performance
clusters with much memory, hence their extensibility is lim-
ited. Second, for each request, they need to scan big indexes
in memory, which is costly. Third, all of these frameworks
only support very limited trajectory queries, therefore cannot
support plentiful urban applications. Distributed NoSQL (Not
Only SQL) data stores, e.g., HBase [7], are suitable for
read/write random access to big data. However, due to lack of
secondary indexes, NoSQL data stores do not natively support
spatio-temporal data management. GeoMesa [8] is an open-
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Fig. 1. Framework of TrajMesa.

source tool that manages large-scale spatio-temporal data on
the top of distributed NoSQL data stores. It transforms multi-
dimensional information into one-dimensional key. However,
GeoMesa cannot be applied to manage trajectories directly.

This paper proposes a holistic distributed NoSQL trajectory
storage engine, TrajMesa, based on GeoMesa. As shown in
Figure 1, TrajMesa incorporates three standard processes:

(1) Preprocessing, which performs three main tasks: noise
filtering, stay point detection, and segmentation. Trajectory
preprocessing is not only necessary for many urban appli-
cations, but also very important for our selection of the
underlying storage schema and index building. More details
can be found in our previous work [9].

(2) Indexing & Storing, which builds indexes for the
preprocessed trajectories, and stores the trajectory data through
GeoMesa. Specifically, we generate two different keys that
combine the spatio-temporal and other necessary information
of a trajectory. Each key and the trajectory data forms a key-
value pair, which is then stored into the key-value data store of
GeoMesa. In other words, we store two copies of a trajectory
into two tables with different keys (detailed in Section III).

(3) Query Processing. With the help of built indexes,
TrajMesa efficiently supports most useful trajectory queries,
including: ID temporal query, spatial range query, similarity
query, and k-NN query (detailed in Section IV).

The contributions of this paper are summarized as follows:
(1) We take the first attempt to build a holistic distributed

NoSQL trajectory storage engine based on GeoMesa, in which
a novel trajectory storage schema is designed.

(2) We devise novel indexing key schemas and multiple
pruning strategies for various trajectory queries.

(3) Experiments show the powerful query efficiency and
scalability of TrajMesa.
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II. PRELIMINARY
Definition 1. (Trajectory) A trajectory tr = {p1 → p2 →
...→ pn} is a list of GPS points ordered by their timestamps,
where pi = {lati, lngi, ti} is a GPS point.

Definition 2. (ID Temporal Query) Given a dataset T , a
moving object oid, a time range R = [ts, te], ID temporal
query returns tri ∈ T , where tri.oid = oid, and there exists
at least one GPS point pj in tri that is generated during R.

Definition 3. (Spatial Range Query) Given a dataset T , a
spatial range S = {latmin, lngmin, latmax, lngmax}, spatial
range query returns tri ∈ T , where there exists at least one
GPS point pj in tri that is located in S.

Definition 4. (Similarity Query) Given a dataset T , a query
trajectory q, a distance function f , a distance threshold ε,
similarity query finds tri ∈ T , where the distance between
q and tri is not greater than ε.

We now support two common trajectory distance functions,
Fréchet distance [10] fF and Hausdorff distance [11] fH .

Definition 5. (k-NN Query) Given a dataset T , a query q, a
positive integer k, a distance function f , k-NN query returns
a set of trajectories T ′ ⊆ T , where |T ′| = k, and for each
tri ∈ T ′, trj ∈ T \ T ′, f(q, tri) < f(q, trj).

If q is a trajectory, f can be fF or fH , and it is called k-NN
trajectory query [5, 12]. If q is a point, f can be defined as
Equ (1), and it is entitled k-NN point query [12].

fP (q, tr) = min
pj∈tr

d(q, pj) (1)

where d(q, pj) is the Euclidean distance between q and pj .

III. INDEXING AND STORING
A. Storage Schema Selection
Vertical Storage Schema. One basic idea to store trajectories
in a key-value store is that, the trajectory data is stored with
each GPS point as one row, just as most cloud-based trajectory
management systems did [9, 13]. We call this schema as
vertical storage schema (V-Store). Figure 2a gives an example,
where the value of each point contains two parts:

(1) Spatio-temporal properties, which consists of the lati-
tude lat, longitude lng, and time t of this GPS point.

(2) Other properties, which includes the moving object
identifier oid, the trajectory id tid, and other property readings.

V-Store regards each GPS point as an independent entity,
which lacks full information of a trajectory. Hence, it is not fit
for trajectory queries, especially for similar query and k-NN
query. Besides, the number of rows is equal to the number of
GPS points, which results in prohibitively numerous key-value
entries. More key-value entries need more disk storage space.

When retrieving the same number of trajectories, it triggers
more disk I/Os, which further hurts the query efficiency.
Horizontal Storage Schema. To address the aforementioned
issues, this paper proposes a novel horizontal storage schema,
i.e., H-Store, to store each trajectory in a single row. As shown
in Figure 2b, the value of each entry contains four parts:

(1) Spatio-temporal properties, which includes the MBR
mbr, the start and end time ts and te, and the start and end
positions ps and pe of a trajectory.

(2) GPS point list. The GPS points in a trajectory are first
serialized using Kryo, and then compressed with GZip. It not
only reduces the storage cost tremendously, but also improves
the efficiency of storing and querying by reducing disk I/Os.

(3) Signature. In most scenarios, a trajectory only locates
in a very small part of its MBR, i.e., the MBR of a trajectory
cannot represent its position exactly. To this end, we creatively
design a signature, which provides finer-grained information
of the trajectory location. As shown in Figure 2c, the MBR
of a trajectory is divided into α × α disjoint regions with
equal size, and each region is numbered. The signature is a
binary sequence of α × α bits. If one or more GPS points
of the trajectory are located in a region, the corresponding
bit is set to 1, otherwise set to 0. A bigger α means a finer
representation, but it requires more storage space and query
time. In our implementation, we set α = 4.

(4) Other properties. Like V-Store, we also store the moving
object id oid, trajectory id tid, and other related properties.

In the following, we will elaborate the design of keys for
each indexing table using H-Store in TrajMesa.
B. ID Temporal Indexing

To support ID temporal query efficiently, TrajMesa
stores a copy of trajectories using attribute indexing
strategy of GeoMesa. Figure 3 shows the key combination
of ID indexing table, where shard is a random number to
achieve load balance, oid is the moving object ID, XZT is
transformed from the trajectory time span (we will detail it
later), and tid is the trajectory ID.

shard + oid + BinNum(2 bytes) + ElementCode(8 bytes) + tid

XZT

Fig. 3. Key Composition of ID Indexing Table.

We propose XZT to convert time ranges into one-
dimensional keys. As there is no limit for the time dimension,
we divide the time line into disjoint time period bins (one day,
one week, one month, or one year). For each bin, we encode
the time ranges whose start time locates in it. Specially, as
shown in Figure 3, XZT consists of two parts:

(1) Bin Num. It indicates which time period bin that a time



range belongs to, which is defined by Equ (2).
Bin(ts) = b(ts −RefT ime)÷BinLenc (2)

where ts is the start time of a time range, RefT ime is the
reference time (e.g., 1970-01-01T00:00:00Z), and BinLen is
the number of seconds in a bin.

(2) Element Code. It represents the offset of a time range
in its time bin. There are three steps to get the element code:
• Time Range Transformation. It transforms the time range

[ts, te] into an offset time range [t′s, t
′
e] according to Equ (3).

Note t′e is also calculated based on the bin number of ts.
Trans(t, Bin) = t−Bin×BinLen−RefT ime (3)

• Sequence Calculation. This step gets a binary sequence S
in a way similar to binary search. As shown in Figure 4a, we
recursively find a line segment L = [tls, tle] in the time period
bin to represent the time range [t′s, t

′
e]. If the start time t′s is

located in the left half part of the search space, we append 0
to S; otherwise, we append 1. This procedure is terminated
when at least one of the following conditions is not met.{

tls ≤ t′s ∧ tle + tle − tls ≥ t′e (I)
|S| < g (II)

(4)

Condition (I) guarantees that [tls, tle + tle − tls] (we call it
the extended time range of [tls, tle], by double its time span)
contains the time range [t′s, t

′
e]. Condition (II) means that the

length of S is not greater than a user specified constant g.
As shown in Figure 4a, line segment [t/4, t/2 + t/2 − t/4]
contains [t′s, t

′
e], but [t/4, 3t/8+3t/8− t/4] does not. Hence,

the sequence of [t′s, t
′
e] is 01.

(a) Example of XZT
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Fig. 4. Example of Indexing.

• Code Generation. This step generates a long integer code
from the binary sequence, according to Equ (5). It can be
regarded as a process of converting binary to decimal.

C(S) =

l−1∑
i=0

si × (2g−i − 1) + 1 (5)

C. Spatial Range Indexing
We build spatial range indexing table for spatial range query,

similarity query and k-NN query based on XZ2 indexing
strategy of GeoMesa. Figure 5 shows the key composition
of spatial range indexing table, where shard is a random
number, XZ+ is transformed from the spatial information of
a trajectory (detailed later), and tid is the trajectory ID.

shard + PosCode(4 bits) + XZ2(8 bytes) + tid

XZ2+

Fig. 5. Key Composition of Spatial Range Indexing Table.

XZ2 [14] is extended from Z2 [15], which finds a region to
represent non-point data (e.g., lines). As shown in Figure 4b,
tr is transformed to 03, as the yellow region R (extended from
03 by doubling its width and height) JUST covers tr. However,
R is too big for tr, as tr only crosses a small portion of it. In

view of that, we propose PosCode to indicate the position of
trajectories more accurately. We divide the yellow region R
into β× β disjoint equal-sized areas, and number them. Then
PosCode is a sequence of β × β bits. If at least one GPS
point of the trajectory locates in an area, the corresponding
bit is set 1, otherwise set 0. We set β = 2 in implementation.

IV. QUERY PROCESSING

A. ID Temporal Query

Query Window Generation. The key of ID temporal indexing
table is shard+oid+BinNum+ElementCode+tid. Given
an ID temporal query q with a time range [tqs, tqe] and a
moving object ID oid, we get query windows by:

(1) Enumerate all possible values of shard.
(2) Combine oid with a zero byte.
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Fig. 6. Example of Query Window Generation.

(3) BinNum generation, which finds a list of time period
bins whose extended time range is overlapped with [tqs, tqe].
Suppose bm = Bin(tqs) and bn = Bin(tqe), then the bins bi,
m− 1 ≤ i ≤ n, are selected.

(4) Offset key range generation. For each bi, we generate
a list of offset key ranges. We first get the offset time range
[tq′s, tq

′
e] according to Equ (3) based on bi, then recursively

check the extended time range Xcur of a time range cur until
the max level g is reached. If Xcur is contained in [tq′s, tq

′
e],

we add a key range that represents all sub time ranges in cur.
If Xcur is overlapped with [tq′s, tq

′
e], we add a key range

that exactly stands for cur to result. Finally, we merge key
ranges if a key range is adjacent to its successor, to reduce
the number of key ranges. Figure 6b gives an example of
offset key range generation, where g = 2. The qualified time
ranges are checked. Furthermore, the key ranges of [t/4, t/2],
[t/2, 3t/4], [3/4t, t], and [1/2t, t] can be merged into one.

(5) Query window combination. We combine shard, oid,
BinNum, and key ranges into query windows.
Query Execution. TrajMesa triggers Scan operations over
the underlying data store in parallel using query windows.
Result Refinement. When all Scan operations are finished,
we removes unqualified trajectories.
B. Spatial Range Query

Query Window Generation. Spatial range query is based on
spatial range indexing table, whose keys follow a pattern of
shard+ PosCode+XZ2 + tid. There are four substeps:

(1) shard generation, the same with ID temporal query.
(2) Spatial key range generation. This step generates a list of

key ranges by the given spatial range query q, which is similar
to ID temporal query but extended to two dimensions [14].

(3) PosCode generation. As discussed in Section III-C, we
divide an extended area into β × β disjoint areas, which can
be represented by β × β bits B. For each extended area of a
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qualified e, if q intersects with the i-th area, then B[i] = 1,
otherwise B[i] = 0. A PosCode of e must satisfy Equ (6):

PosCode(e)&B 6= 0 (6)

where (∗&∗) means bitwise AND operation. For each qualified
e, we generate all satisfied PosCodes, whose number is
between 2β×β−1 (if q intersects with only one area) and
2β×β − 1 (if q intersects with all areas).

(4) Query window combination, which combines shard,
key ranges, and PosCodes into query windows.
Query Execution. Similar to ID temporal query, but we use
the spatial range indexing table in this case.
Result Refinement. Similar to ID temporal query, but we
refine trajectories by the given spatial range.
C. Similarity Query

Similarity query regards spatial range query as a build-
ing block. As shown in Figure 7a, given a query trajec-
tory q with a distance threshold ε (we would transform it
from km to coordinate degree), we get two spatial ranges
R1 = {lat1 − ε, lng1 − ε, lat1 + ε, lng1 + ε} and R2 =
{latn−ε, lngn−ε, latn+ε, lngn+ε}, where (lat1, lng1) and
(latn, lngn) are the start and end points of q, respectively. All
similar trajectories should be contained in the spatial range
query result T ′ = SR query(T , R1) ∩ SR query(T , R2).
Lemma 1. All similar trajectories of q are contained in T ′,
in terms both of fF and fH .

As the complexities of fF and fH are both O(|tr|×|q|), we
propose 3 types of pruning strategies (as shown in Figure 7),
all of which can be calculated in a constant time complexity.

(1) MBR Pruning. Suppose q.mbr = {latmin, lngmin,
latmax, lngmax}, we get S = {latmin − ε, lngmin − ε,
latmax+ ε, lngmax+ ε}. The MBRs of all similar trajectories
should be full contained in S.

(2) SEP LB. We propose a lower bound for Fréchet distance
based on the start and end points of two trajectories.

SEP LBfF (q, tr) = max{d(q.ps, tr.ps), d(q.pe, tr.pe)} (7)

Lemma 2. If SEP LBfF (q, tr) > ε, then fF (q, tr) > ε.
(3) SIG LB. We propose a signature lower bound based on

the trajectory signature.
SIG LBfF (q, tr) = SIG LBfH (q, tr) =

max{ max
rq∈Sig(q)

min
rtr∈Sig(tr)

d(rq, rtr), max
rtr∈Sig(tr)

min
rq∈Sig(q)

d(rtr, rq)}
(8)where rq ∈ Sig(q) is a signature region of trajectory q,

d(rq, rtr) is the region distance between rq and rtr.

Lemma 3. If SIG LBfF (q, tr) > ε, then fF (q, tr) > ε.
Beside, If SIG LBfH (q, tr) > ε, then fH(q, tr) > ε.

D. k-NN Query
The main idea of k-NN query is to iteratively expand the

query spatial range, until the most k similar trajectories are
found. Figure 7c gives an example of k-NN point query, we
trigger 5 spatial range queries with a spatial range of a certain
resolution, following a descending distance order between the
query point q and the target region r. Once the distance
between q and r is larger than the distance dk between q and
the k-th nearest trajectory trk, we can stop the query process,
and return the result.

V. EXPERIMENTS
We conduct a set of experiments using a synthetic trajectory

dataset, whose size is over 1360GB. As shown in Figure 8a,
when the data size gets bigger from 20% to 100%, both storing
time and storage size grow linearly, because more trajectories
need to be processed. Storing about 1T data only needs
about 1.5 hours and 313GB disk space, which is due to the
novel underlying storage schema and compression mechanism.
Figure 8b shows that the time of all queries increases with
a bigger data size, as more trajectories are qualified, and it
triggers more disk I/Os. It is interesting to see that the query
time of similarity query is less than that of spatial range query,
although we perform two spatial range queries underlying each
similarity query. The reason could be that similarity query
prunes most trajectories, and there is much less data returned.
The transmission bandwidth acts as a bottleneck in TrajMesa.
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