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Abstract

Accurate and updated road network data is vital in many
urban applications, such as car-sharing, and logistics. The
traditional approach to identifying the road network, i.e.,
field survey, requires a significant amount of time and ef-
fort. With the wide usage of GPS embedded devices, a
huge amount of trajectory data has been generated by dif-
ferent types of mobile objects, which provides a new op-
portunity to extract the underlying road network. However,
the existing trajectory-based map recovery approaches re-
quire many empirical parameters and do not utilize the prior
knowledge in existing maps, which over-simplifies or over-
complicates the reconstructed road network. To this end, we
propose a deep learning-based map generation framework,
i.e., DeepMG, which learns the structure of the existing road
network to overcome the noisy GPS positions. More specifi-
cally, DeepMG extracts features from trajectories in both spa-
tial view and transition view and uses a convolutional deep
neural network T2RNet to infer road centerlines. After that, a
trajectory-based post-processing algorithm is proposed to re-
fine the topological connectivity of the recovered map. Exten-
sive experiments on two real-world trajectory datasets con-
firm that DeepMG significantly outperforms the state-of-the-
art methods.

Introduction
With the increased population mobility and the rising of car-
sharing service, accurate and updated road network data be-
comes vital. Conventional approaches for collecting road
network data such as field surveys are costly and labor-
intensive. With the wide usage of GPS embedded devices,
a huge amount of trajectory data has been generated by dif-
ferent types of mobile objects (Zheng et al. 2014), which
provides a new opportunity to extract the underlying road
network. Yet, generating a map from trajectories is a non-
trivial task, which is mainly because trajectories usually in-
volve GPS noises and are collected with different sampling
rates. To illustrate this, we present in Fig 1 a) the map near
a roundabout area in Beijing, b) the GPS point cloud based
on a taxi trajectory dataset and c) the line segments between
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Figure 1: Motivation Examples.

two consecutive GPS points of the dataset. As could be no-
ticed, using the point cloud for map generation would be
incapable of distinguishing parallel roads that are spatially
close and using the line segments for map generation would
result in many redundant edges. And such a case would be
even worse if the sampling rate decreases.

Despite the challenges of map generation, many meth-
ods have been developed for this problem, which can
be categorized into three classes: 1) Clustering-based ap-
proach (Edelkamp and Schrödl 2003; Chen et al. 2016;
Stanojevic et al. 2018), which first generates a set of road
ends using some clustering algorithm based on geospa-
tial distances and direction similarities and then links the
road ends as road segments by using trajectories; 2) Trace-
merging based approach (Cao and Krumm 2009), which
scans trajectories sequentially and for each one, either
merges it to some existing road segments or generates some
new road segments if no suitable merging operations are
possible; 3) Kernel density estimation (KDE) based ap-
proach (Biagioni and Eriksson 2012b; Wang, Wang, and
Li 2015), which performs KDE on the point cloud and ex-
tracts a map afterward. While these existing methods pro-
vide some insights for map generation, they still suffer from
various types of issues. Consider the clustering-based and
trace-merging based approaches. Since they generate road
segments somehow based on the line segments between con-
secutive points, in cases that trajectories are sampled with
low rates, they would generate many shortcuts that do not
exist in a real map. Besides, these approaches are ineffec-
tive in distinguishing parallel road segments towards the



same direction, which is mainly because they provide not
many mechanisms for handling GPS noises in trajectory
data. Consider the KDE based approach. While it has the
capability of handling low-sampling trajectories (since it is
based on point clouds), it would often merge several parallel
roads that are close to one another into a single one.

In this paper, we propose a Deep learning-based Map
Generation framework (DeepMG) to generate routable maps
from trajectories, which can handle trajectories with differ-
ent sampling rates and distinguish parallel road segments
leveraging the knowledge of existing maps. The key con-
tributions of this paper can be summarized as follows:
• We propose the first deep learning-based approach for

generating routable maps from trajectories, which enjoys
various superiorities over existing approaches.

• We design the map generation framework DeepMG, con-
sisting of two modules: 1) geometry translation, which
extracts features in trajectories from two views and
then feeds the features into a Trajectory-Road transla-
tion model called T2RNet for predicting road centerlines
(which correspond to line segments on a map). 2) topol-
ogy construction, which extracts a graph structure from
the predicted centerlines, links among those dead ends of
edges for better connectivity and then refines the graph
structure (map) by using the trajectory data.

• We conduct extensive experiments as well as case stud-
ies on two real-world taxi trajectory datasets. Experiments
show DeepMG significantly outperforms the state-of-the-
art map reconstruction algorithms.

Overview
Preliminary
Definition 1 (Trajectory). A trajectory is a sequence of
spatio-temporal points, denoted as tr =< p1, p2, ..., pn >,
where each point p = (x, y, t) consists of a location (x, y)
(e.g., longitude and latitude) at time t. Points in a trajectory
are organized chronologically, namely, ∀i < j : pi.t < pj .t.
Definition 2 (Map). A map is a directed graph, denoted as
G =< V,E >, where each vertex v ∈ V is associated with a
location (x, y), and each edge e ∈ E is a vertex tuple (u, v),
denoting the connectivity from u to v.
Definition 3 (Map Matching). Map matching is a process
of inferring the underlying sequence of edges e1 → e2 →
· · · → en for a given trajectory tr based on a certain map.

Problem Statement. Given a set of trajectories T =
{tr1, tr2, · · · , trn}, infer its underlying map G.

Framework
The overview of our map generation framework DeepMG is
presented in Fig 2, which is comprised of two steps: 1) Ge-
ometry Translation, which extracts features from trajectory
data and then feeds the features to T2RNet for predicting the
road centerlines; 2) Topology Construction, which extracts a
graph structure from the predicted road centerlines, gener-
ates some extra links for better connectivity and then refines
the graph structure using the trajectory data again.
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Figure 2: The Framework of DeepMG.

Geometry Translation
Feature Extraction
Similar to some tasks for aerial image segmentation (Demir
et al. 2018), we split the region of interest into tiles and re-
gard each tile as a data sample. For each tile, we partition it
into a grid with I × J cells and for each grid cell, we extract
some features from the trajectories in two views, namely the
spatial view and the transition view.
Spatial View. In the spatial view, the features of a grid cell
are based on the trajectory data within the cell. Specifically,
we consider four types of features: 1) Point, which is the
GPS point density of a grid cell (we use one of the three
equal quantiles of point densities). The Point feature is the
most straightforward indicator of the underlying roads. 2)
Line: the number of line segments in each grid cell, which
are generated from two consecutive points in trajectories (we
use normalized values in the range [0,1]). The Line feature
could help with recovering the roads when points are sparse.
3) Speed, which is the average moving speed in a grid cell.
The speeds are inferred based on consecutive points, which
could help with recovering a road segment completely since,
on the same road, the speed usually does not change that
much. 4) Direction, which captures the moving directions
within a grid cell. We consider 8 regular directions (e.g.,
north, northeast, etc.), count the occurrences of each direc-
tion for a movement between two consecutive points, and
then normalize the counts into a histogram. The direction
feature could be helpful for distinguishing two parallel roads
in opposite directions. In each grid cell, we can obtain an 11-
dimensional vector with the above features, and the spatial
view of the grid could be denoted as Xs ∈ R11×I×J .
Transition View. In the transition view, the features of a grid
cell are based on the trajectory data that spans over this cell
and some other cells. The features in this view are essential
especially for the trajectories with low sampling rates since
in these cases, the two consecutive points would be often lo-
cated in different cells, which further implies that many fea-
tures in the spatial view such as Line, Speed and Direction
would have limited usage. Specifically, for a grid cell c, we
consider those neighboring cells c′ such that there exist two
consecutive points which are from c′ to c. We capture these
cells c′ with a binary matrix such that the entry correspond-
ing to c′ is set to 1 if there exist two consecutive points which
are from c′ to c, and 0 otherwise. Besides, we consider those
cells c′′ such that there exist two consecutive points which
are from c to c′′ and capture the cells with another binary
matrix similarly as we do for cells c′. These two matrices



then correspond to the features in the transition view. Note
that these two matrices would usually be very sparse, which
could degrade the effectiveness of using these features. To
mitigate this issue, we control the neighborhood area by a
distance parameter, and use a lower resolution for forming
cells c′ and c′′. We denote the neighborhood size of c as
T × T , and the features in the transition view could be de-
noted as Xt ∈ Z2×T×T×I×J

2 , where Z2 means the set of
binary values {0, 1}.

T2RNet
Recall that the task of the geometry translation module is to
predict the road centerlines of a map from trajectory data.
An intuitive idea is to model this task as a pixel-wise image
classification one and then utilize existing models for the
task. However, due to the fact that a typical road centerline
would be single-pixel wide, which is too shallow for conven-
tional image classification models to be effective. Motivated
by this, we introduce an auxiliary task to support the task
of road centerline prediction. Specifically, the auxiliary task
is to predict the spatial regions that involve roads, which we
call road regions. We call this auxiliary task road region pre-
diction. Note that the task of road region prediction should
be easier than that of road centerline prediction since for the
former task, the targets are wider and existing image clas-
sification models could be effectively utilized. Specifically,
we propose a multi-task learning architecture called T2RNet
whose overview is presented in Fig 3. T2RNet involves four
components, namely (1) transition embedding, (2) shared
encoder, (3) road region decoder, and (4) road centerline
decoder, with details explained next.
(1) Transition Embedding. This component is motivated
by that the features in the transition view, captured by Xt,
could be very sparse since objects usually move from and
to a limited number of cells nearby. Inspired by the idea of
word embedding (Mikolov et al. 2013), we first use dense
layers to transform Xt into a dense representation Ht ∈
Rk×I×J and the structure is depicted in the top left of Fig 3,
where k is the size of the embedded dimension.
(2) Shared Encoder. The shared encoder, which is shared
by two decoders, is used to encode the features at differ-
ent levels. Specifically, the concatenation of Xs and Ht

is passed to M downsampling blocks. Each downsampling
block contains a ConvBlock and a Max Pooling layer. The
structure of the ConvBlock, as shown on the top right of
Fig 3, contains two 3×3 convolutional layers, and there
are F filters in the first ConvBlock, which are doubled af-
ter each downsampling. In the ConvBlock, each convolu-
tional layer is followed by a Batch Normalization (Ioffe
and Szegedy 2015), with a ReLU to introduce non-linearity.
We denote the feature map after a ConvBlock as Em ∈
R2m−1F× I

2m−1× J

2m−1 , where m = 1, · · · ,M , and Em is
downsampled by half after the Max Pooling layer. Finally,
another ConvBlock, which serves as the bottleneck layer, is
used to produce the final feature map EM+1.
(3) Road Region Decoder. This is to predict the road re-
gions given the encoded information from the shared en-
coder (i.e., the road region prediction task). Specifically,
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Figure 3: T2RNet Architecture.

EM+1 passes through M upsampling blocks. Each upsam-
pling block first uses a transposed convolution layer (Con-
vTrans) followed by a ReLU for the upsampling purpose. Its
output RDm ∈ R2m−1F× I

2m−1× J

2m−1 is concatenated with
Em, and then fed into a ConvBlock for information fusion.
Finally, a convolution layer (3×3, 1) and a Sigmoid activa-
tion are applied to generate the final road region prediction.
(4) Road Centerline Decoder. This is to predict the road
centerline leveraging both the encoded information and the
information from road region decoder (i.e., the road center-
line prediction task). The idea is similar to that of the road
region decoder except that during the information fusion in
each layer, we concatenate not only the information from
the encoder, i.e., Em, but also that from the road region de-
coder, i.e., RDm, so that the learned road region informa-
tion would help with the road centerline prediction task.
Optimization. For each edge in the map, we use a one-pixel
wide line segment linking its two ends as a road centerline.
The tile of road centerlines is denoted as Yc ∈ ZI×J

2 . We
also mask nearby grids around the road centerlines to gener-
ate the labels of road region Yr ∈ ZI×J

2 . Since the positive
and the negative labels are extremely imbalanced for Yc and
Yr, we employ the Dice loss (Milletari, Navab, and Ahmadi
2016), which is designed for tackling small foreground is-
sues, as our loss function. Specifically, the Dice loss of the
prediction Ŷ given the ground truth Y is:

LDice(Ŷ,Y) = 1−
2
∑I

i

∑J
j ŶijYij + ε∑I

i

∑J
j Ŷij +

∑I
i

∑J
j Yij + ε

(1)

where the ε term is used to ensure the loss function stability
by avoiding the numerical issue of being divided by 0.

We minimize the hybrid Dice loss of road centerline pre-
diction and road region prediction by gradient descent.

L(θ) = (1− λ)LDice(Ŷc,Yc) + λLDice(Ŷr,Yr) (2)



where θ are all trainable parameters and λ is the hyperpa-
rameter that balances two types of loss.

Topology Construction
While the geometry translation module can predict the
road centerlines, the topological connectivity can not be
guaranteed. Many techniques for connecting broken edges
have been proposed in the literature of aerial imagery road
detection (Mnih 2013; Máttyus, Luo, and Urtasun 2017;
Sun et al. 2018). Nevertheless, these techniques are inca-
pable of inferring the directions of roads or guaranteeing the
connection between two edges that are truly linked. Differ-
ing from these studies, we use trajectories as evidence for
constructing the topology of a map, which links broken road
segments and infers the directions simultaneously. Specif-
ically, our solution involves three steps: namely 1) graph
extraction, which extracts an initial map from the predicted
road centerlines; 2) link generation, which generates all pos-
sible transition links among dead ends of edges; 3) map re-
finement, which refines the map further based on trajectories.

Graph Extraction
In this step, we concatenate all predicted road centerlines
based on their underlying tiles. Then we adopt the com-
bustion technique (Shi, Shen, and Liu 2009) to construct an
initial undirected map from the predicted centerlines, where
each road centerline would have a corresponding edge.

Link Generation
In this step, we use a heuristic algorithm to generate all pos-
sible links among dead ends of edges nearby. The pseudo
code is given in Algorithm 1. Since a road edge is straight,
the generated links should also be smooth when linking bro-
ken edges. Therefore, we generate a link from each dead end
v of an edge within a radiusRlink in the following two cases.

• The extension of the edge starting from v intersects an-
other edge. In this case, we create a new vertex at the in-
tersection t, and generate a link between v and t (Line 9).

• The intersection point does not exist, but the nearest ver-
tex n of the edge to v is a dead end, and there could be a
smooth transition from v to n (e.g., the turning direction
is not greater than 90◦). In this case, we generate a link
between v and n (Line 13).

In detail, we first create two sets Vnew andEnew to record
vertices and links that will be added to the map (Line 1).
After all dead ends are examined, each vertex in Vnew is
added and used to split an existing edge on which the vertex
is located on and each link in Enew is added (Line 14-17).

As shown in Fig 4a, we generate a link between o and a
on e1 and another link between o and b of e2 (the turning
from o to e2 is smooth). Note that we do not generate a link
from o to e3 since its transition to e3 is not smooth.

Map Refinement
In this step, we refine the map further based on trajectories.
The main idea is to remove edges and generated links that

Algorithm 1 Link Generation.
Input: Initial undirected map G; link radius Rlink.
Output: Linked undirected map G.

1: Vnew ← ∅, Enew ← ∅;
2: for v ∈ G.V do
3: if deg(v) = 1 then
4: u← get adjacent vertex(v);
5: C ← get neighboring edges(v,Rlink);
6: for e ∈ C do
7: t← cal intersection point(u, v, e);
8: if t 6= null then
9: Vnew ← Vnew∪{t}, Enew ← Enew∪{(v, t)};

10: else
11: n← the nearest vertex of e to v;
12: if deg(n) = 1 and angle(−→uv,−→vn) ≤ 90◦ then
13: Enew ← Enew ∪ {(v, n)};
14: for v ∈ Vnew do
15: split the edge, on which v is located; add v to G;
16: for e ∈ Enew do
17: add e to G;
18: return G;

(a) Link Generation. (b) Undesired Shortcuts.
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Figure 4: Topology Construction Illustration.

are not traversed through often. Specifically, we perform tra-
jectory map matching (Yuan et al. 2010b) to map the tra-
jectories to the current map. We note that directly apply-
ing existing methods is not sufficient for the map refinement
purpose here since they usually assume that moving objects
follow the shortest paths between consecutive points, which
would cause problems as illustrated in Fig 4b. In the figures,
the solid lines are predicted edges, and the dash lines are
generated links. During map matching, if e1 is a candidate
road to match for P1 and e3 is a candidate road for P2, then
the algorithm uses Path 1 to capture the transition probabil-
ity from e1 to e2 since this corresponds to the shortest path.
However, Path 2 is much more likely an actual path, since
the edges are more reliable than links. Therefore, we use the
edge length multiplied by a penalty factor α (α > 1) as the
edge weight for created links so that the shortest path calcu-
lation will prefer edges over generated links.

After we have matched all trajectories on the map, the
inferred paths are used as evidence of the transition. We re-
move those edges or generated links who witness less than
S times of transitions, and obtain the refined directed map.

Experiments
In this section, we report the overall performance of
DeepMG, following by the performance of its two modules.



Experimental Settings
Datasets. We use two real-world taxi trajectory datasets, i.e.,
TaxiBJ and TaxiJN, with different sampling rates for evalu-
ations. TaxiBJ is obtained from T-Drive (Yuan et al. 2010a)
and TaxiJN is a private one donated by the government of
Jinan. Several preprocessing algorithms, e.g., noise filtering,
stay point removal (Zheng 2015), are applied. The detailed
statistics of the datasets are given in Tab 1, where the statis-
tics of the test region are given in the parentheses. Each sam-
ple is a 256×256 grid, and each cell is 2m×2m, which is the
coarsest resolution so that two parallel centerlines are distin-
guishable. The number of samples for training, validation,
and test are 744, 180, 100 for TaxiBJ, and 1251, 313, 100
for TaxiJN. The baselines are only compared in the test re-
gion. We use OpenStreetMap as the ground truth, and road
region labels are generated by masking 2 cells surrounding
the centerlines. We remove edges on which there are less
than 10 trajectories in TaxiBJ, and 5 in TaxiJN, respectively.

Table 1: Data Descriptions.

Dataset TaxiBJ TaxiJN
#Days 30 30

#Vehicles 500 70
Sampling Rate ∼30s ∼3s

Size (km2) 16×16 (5×5) 16×26 (5×5)
#Points 3.1M (304K) 5.7M (322K)

#Trajectories 66,124 (13,462) 29,556 (3,954)
Roads (km) 2,772 (284) 2,048 (123)

Metrics. The accuracy of a generated map depends on ge-
ometry and topology. We use the de-facto standard for mea-
suring the quality of the map proposed in (Biagioni and
Eriksson 2012a) to simultaneously measure the geometric
and topological similarity of maps. The main idea is that
starting from a random location on the road, we find its road
network reachable grid cells within a maximum radius. The
reachable cells are marked as 1, and 0 otherwise. We report
the average F1 score in different spatial resolutions over n
sampled starting locations. We vary the cell size from 5m
to 20m, sample n = 200 random starting cells and set
the reachable radius as 2km, consistent with existing ap-
proaches (Stanojevic et al. 2018).
Baselines. We compare DeepMG with 5 representative ap-
proaches for map reconstruction listed as follows.

• Edelkamp (Edelkamp and Schrödl 2003), which is a
clustering-based algorithm. It first generates seed loca-
tions as initial centers according to distance and bearing
similarity, and then k-Means algorithm is used to adjust
cluster centers. At last, trajectories are used to form road
segments from those locations.

• Chen (Chen et al. 2016), which is another clustering-
based algorithm. It first generates local small edges based
on centroids, then links small edges using trajectories.

• Kharita (Stanojevic et al. 2018), which can also be cat-
egorized as a clustering-based method. After vertices are

inferred by clustering and edges are created by trajecto-
ries, a graph sparsification step is used to simplify the
graph. To the authors’ knowledge, this is the state-of-the-
art method for map reconstruction.

• Cao (Cao and Krumm 2009), which is a trace-merging
based algorithm. The main idea is to reduce GPS noises
based on particle simulation. It uses a strong but short-
range force to pull together nearby traces, and a weaker
but long-range force to keep traces from straying too far.

• Biagioni (Biagioni and Eriksson 2012b), which is a KDE
based approach. It converts the trajectory points into a
road network skeleton image in different confidence lev-
els based on KDE, and then a density-aware map match-
ing algorithm is used to remove low support edges.

We also compare the performance of DeepMG without
the topology construction, denoted as DeepMG-nt.
Implementations. DeepMG is fully written in Python. We
use the author’s implementation of the baseline algorithms,
except for Chen, whose source code is not available for us.
The T2RNet model in geometry translation is implemented
by PyTorch, and trained with one NVIDIA Tesla V100 GPU.
Parameter Settings. For feature extraction in transition
view, we set T = 8, and the neighborhood distance as 300m
for TaxiBJ and 50m for TaxiJN due to different sampling
rates. T2RNet has 64 and 8 hidden units respectively in the
first and the second dense layer in transition embedding, the
first ConvBlock of the encoder has F = 64 filters, and the
network performs downsampling for M = 4 times. Dur-
ing the training phase, we leverage Adam (Kingma and Ba
2014) to perform network training with a learning rate 2e−4
and batch size 8. We also apply a staircase-like schedule by
halving the learning rate every 10 epochs. For topology con-
struction, Rlink = 100m, α = 1.4, S = 5 for TaxiBJ and
S = 2 for TaxiJN due to different number of trajectories.

Performance Comparison
Quantitative Comparison. We report the F1 score for 5
baseline solutions, DeepMG and its variant in Fig 6. The re-
sults show DeepMG consistently outperforms the baselines
in different spatial resolutions on two trajectory datasets. In
the finest resolution, DeepMG outperforms the best base-
line algorithm by 32.3%, 6.5% on TaxiBJ and TaxiJN, re-
spectively. The improvement on TaxiBJ is much larger due
to the low sampling rate issue, which is not well handled
by existing methods. It also can be observed by comparing
DeepMG-nt and DeepMG. Before topology construction,
the connectivity of the map is poor, which leads to limited
reachable grids and lowers the F1 score. After we construct
the topology of the map, the performance of the DeepMG
ranked the top over all baselines, which not only shows the
importance of the second step, but also demonstrates the ef-
fectiveness of the first step.
Visual Comparison. Due to space limitations, we only vi-
sualize DeepMG, as well as baselines at a roundabout in
Beijing in Fig 5 1 , which is one of the most difficult cases

1The final output of DeepMG is also shown in Fig 2.



(a) Edelkamp. (b) Chen. (c) Kharita. (d) Cao. (e) Biagioni. (f) DeepMG.

Figure 5: Seven algorithm at a roundabout near Gongzhufen area in TaxiBJ.
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Figure 6: Performance on F1.

for map reconstruction. The corresponding trajectories and
the ground truth map is already shown in Fig 1. The results
demonstrate that Biagioni, which is a KDE-based method,
generates few redundant edges, and is robust to the sampling
rate. However, it is difficult to distinguish two parallel roads.
Although the direction is considered in other baselines, it is
difficult to set global consistent parameters, which makes
the edges too complicated. As shown in the figure, DeepMG
significantly outperforms baselines, which can successfully
identify parallel roads in the same direction without gener-
ating many redundant edges.

Geometry Translation Component

Model Comparison. To evaluate the effectiveness of
T2RNet, we replace the encoder-decoder part of T2RNet
with 6 models to directly predict road centerlines.

• FCN (Long, Shelhamer, and Darrell 2015): FCN replaces
the FC layers of classification nets with convolutions, and
multi-resolution features are combined before prediction.

• LinkNet (Chaurasia and Culurciello 2017): LinkNet uses
ResNet (He et al. 2016) as the encoder block, and the fea-
ture maps from the encoder are summed with the upsam-
pled feature maps from the decoder.

• DeepLabV3+ (Chen et al. 2017): DeepLabV3+ encodes
multi-scale contextual information by applying atrous
convolution at multiple scales, and then decodes the seg-
mentation results along object boundaries.

• UNet (Ronneberger, Fischer, and Brox 2015): UNet con-
sists of an encoding block which downsamples the orig-
inal image, and a decoding block, which upsamples the

encoded information. The encoding block and decoding
block have linked shortcuts at corresponding layers.

• D-LinkNet (Zhou, Zhang, and Wu 2018): D-LinkNet is
a variant of LinkNet, which introduces a bottleneck layer
with dilated convolution between encoder and decoder.

• LinkNet+1D Decoder (Sun et al. 2019): It is also a variant
of LinkNet, which replaces the traditional 2D filters of
convolution layers in the decoder block with 1D. It is the
SOTA method for aerial image segmentation.

We report the average pixel-wise Precision, Recall, and
F1 of the test set in Tab 2. The performance of FCN is the
worst in both two datasets since it predicts results by directly
upsampling from a very small feature map, which makes
the location information hard to reconstruct. DeepLabV3+
also doesn’t perform very well, due to there is few informa-
tion fusion between encoder and decoder. Other models fol-
lowing the encoder-decoder structure with skip-connections,
shows relatively good performance. Experiments show that
concatenation-based fusion (e.g., UNet) is more effective
than summation-based fusion (e.g., LinkNet and its vari-
ants) for centerline inference, since the summation is usually
inaccurate. T2RNet consistently outperforms all alternative
models. An auxiliary task, i.e., road region inference, is in-
troduced in T2RNet, so that the centerline decoder can fuse
both the encoder and road region decoder information, and
make more accurate predictions.
Effect of Multi-task Learning. To show the effectiveness of
multi-task learning, we evaluate our model under different λ
settings from 0 to 0.8. A small λ pays more attention to the
centerline inference task, and a larger λ cares more about
road region prediction. The result is shown in Fig 7. We find
that when λ = 0.2, T2RNet achieves the best performance
on both two datasets. A smaller λ or a larger λ decreases the
centerline inference performance.
Effect of Different Features. The evaluation of different
feature combinations is shown in Tab 3, where P, L, S,
A means point feature, line feature, spatial view features,
and all features, respectively. Comparing P and L, we find
point feature has higher precision than line feature in both
datasets, which is consistent with our common knowledge.
However, line feature has a higher recall than point feature
since it fills the distance gap between consecutive points. We
also find that line feature ultimately has a higher F1 score
than point feature in TaxiJN, while TaxiBJ is on the opposite.
The sampling rate of TaxiJN is much higher than TaxiBJ,



Table 2: Model Comparisons on Different Datasets

Methods #Params TaxiBJ TaxiJN
Precision Recall F1 Precision Recall F1

FCN 134.3M 0.1824 0.6269 0.2778 0.0255 0.5026 0.0482
LinkNet 21.7M 0.2652 0.4690 0.3325 0.1566 0.3238 0.2059

DeepLabV3+ 50.5M 0.2199 0.5571 0.3107 0.1383 0.3471 0.1883
UNet 39.4M 0.2745 0.4760 0.3439 0.1749 0.2945 0.2079

D-LinkNet 31.1M 0.2637 0.4884 0.3387 0.1654 0.3116 0.2084
LinkNet+1D Decoder 21.8M 0.2576 0.5105 0.3384 0.1602 0.3248 0.2042

T2RNet 63.0M 0.2879 0.5245 0.3678 0.1795 0.3020 0.2156
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Figure 7: Effect of λ.

so the line between two consecutive points is highly likely
still on the road while this assumption is not held in TaxiBJ.
Comparing S and A, we demonstrate the effectiveness of the
transition view. The improvement of the transition view is
much bigger in TaxiBJ than TaxiJN. This could because fea-
tures in spatial view are already accurate enough when the
sampling rate is high, while the transition view brings more
information gains for low sampling rate trajectories.

Table 3: Effect of Different Features.

F TaxiBJ TaxiJN
Preci. Recall F1 Preci. Recall F1

P 0.2549 0.4840 0.3305 0.1619 0.2966 0.2030
L 0.2293 0.5000 0.3097 0.1580 0.3364 0.2096
S 0.2594 0.5196 0.3434 0.1753 0.2893 0.2123
A 0.2879 0.5245 0.3678 0.1795 0.3020 0.2156

Topology Construction Component

We have already quantitatively evaluated the effectiveness of
topology construction in Fig 6. In this subsection, we further
demonstrate a qualitative result. The generated maps under
different α settings are given the Fig 8. The blue lines are the
predicted edges, and the red lines are the links we generated.
On one hand, if we do not add a penalty to the generated
link (α = 1.0), there are many shortcuts generated. On the
other hand, if α is too large (e.g., α = 3.0), road segments
can be broken due to the map matching algorithm has fewer
chances to match trajectories on those links. Therefore, we
choose α = 1.4, which has a good balance.

(a) α=1.0 (b) α=1.4 (c) α=3.0

Figure 8: Effect of α.

Related Work
Map Reconstruction from Trajectories
Map reconstruction from trajectories is a field that has been
extensively studied for a long time, and the main research
focus is on how to reduce GPS noises and uncertainties. A
survey is given in (Biagioni and Eriksson 2012a), which cat-
egorized existing works into 3 types: 1) Clustering-based
method (Edelkamp and Schrödl 2003; Chen et al. 2016;
Stanojevic et al. 2018) , which firstly identifies nodes (or
short edges) from raw GPS points using spatial clustering
algorithms based on location closeness and direction simi-
larity, and then links those nodes (or short edges) using tra-
jectories; 2) trace-merging based method (Cao and Krumm
2009; Niehöfer et al. 2009), which directly merges edges
from every consecutive points in trajectories; 3) KDE based
method (Biagioni and Eriksson 2012b; Wang, Wang, and Li
2015) , which performs kernel density estimation over raw
GPS points, and several image processing techniques (e.g.,
morphological dilation, closing, thinning) are applied to ex-
tract road centerlines. However, all existing methods either
cannot handle low sampling rate trajectories or are not able
to identify spatially near parallel roads. In this work, we use
a deep learning-based approach to learn how to reduce noise
and detect centerlines, and the connectivity is further refined
using trajectories.

Road Detection from Aerial Images
Road detection from aerial images is an active field in the
computer vision community, which essentially corresponds
to a semantic segmentation problem. With the rising of deep
learning, (Mnih and Hinton 2012; Mnih 2013) employ con-
volutional networks to classify each pixel from a larger
image patch. Due to the performance issues and compli-
cated dependencies with neighborhood locations, predict-
ing all pixels at once becomes more popular recently, e.g.,



Fully Convolutional Network (Long, Shelhamer, and Dar-
rell 2015), U-Net (Ronneberger, Fischer, and Brox 2015),
and DeepLab (Chen et al. 2017). CasNet (Cheng et al. 2017)
uses a cascaded network to extract road region and road cen-
terline from aerial images. D-LinkNet (Zhou, Zhang, and
Wu 2018) won top places in recent aerial image segmen-
tation challenge (Demir et al. 2018). The closest work to us
is (Sun et al. 2019), which leverages both satellite images
and GPS trajectories to detect road regions. Instead of treat-
ing trajectory only from spatial view in (Sun et al. 2019), we
introduce another transition view to improve the prediction
quality. Moreover, most aforementioned works are mainly
focused on detecting road regions from remote sensing data,
while we focus on the road centerline inference from trajec-
tories, and reconstructing a routable and directed map.

Conclusion
In this paper, we study the problem of generating maps from
trajectories. We propose a deep learning-based map genera-
tion framework DeepMG. DeepMG can handle trajectories
with different sampling rates and distinguish parallel roads
that are spatially close without empirical parameter tuning.
Experiments on two real-world datasets show DeepMG out-
performs baselines by at least 32.3% for low sampling rate
trajectories and 6.5% for high sampling rate trajectories.
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