
CloudTP: A Cloud-based Flexible Trajectory
Preprocessing Framework

Sijie Ruan 1, Ruiyuan Li 1, Jie Bao 2, Tianfu He 3, Yu Zheng 1,4†

1 School of Computer Science and Technology, Xidian University, Shaanxi, China
2 Urban Computing Group, Microsoft Research, Beijing, China

3 School of Computer Science and Technology, Harbin Institution of Technology, China
4 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
sjruan94@gmail.com liruiyuan@stu.xidian.edu.cn jie.bao@hotmail.com

{Tianfu.D.He, msyuzheng}@outlook.com

Abstract—Trajectory data preprocessing is to convert raw GPS
logs into organized trajectories, which is a common, necessary
but tedious task in many urban applications. This paper proposes
CloudTP, a cloud-based flexible trajectory data preprocessing
framework, to provide an efficient online service, easing the
burdens of urban application builders. The proposed system
is designed and implemented based on the cloud storage and
parallel computing framework (i.e. Spark). Its features consist
of 1) noise filtering, 2) trajectory segmentation, 3) map matching,
and 4) index building. CloudTP is useful for both normal users
and advanced users. By simply uploading trajectory datasets and
setting corresponding parameters, normal users can get orga-
nized trajectories, statistics and visualizations on the cloud, while
advanced users can also customize their own algorithms in any
preprocessing module. Finally, usage scenarios are demonstrated
to show the capability and flexibility of CloudTP.

Keywords—trajectory processing; cloud computing; map
matching; spatio-temporal index

I. INTRODUCTION

Trajectory data, generated by vehicles, sharing bikes, ani-
mals, etc, is very useful in many urban computing applications
[1], such as traffic modeling [2], urban planning [3], and path
recommendation [4], [5]. Trajectory preprocessing is a com-
mon, necessary and fundamental step of these applications.

Trajectory preprocessing is important, as the data noise and
outliers in raw data affect the accuracy and performance of
later applications. However, it is very time consuming due
to some high time complexity sub-tasks (e.g., map matching)
and the increasing data volume. Furthermore, the trajectories
generated by variant objects (e.g., vehicles, bikes and smart
phones) are quite different in moving behaviors. There are no
universal preprocessing algorithms that can be applied to all
of them without any modification.

In this paper, we propose a Cloud-based flexible Trajectory
Preprocessing framework, i.e., CloudTP, to ease the burdens
on urban application builders. As shown in Fig. 1, CloudTP
takes raw GPS logs as input, and generates organized clean
trajectories for users. To improve the efficiency of dealing
with large-scale raw GPS logs, it leverages parallel computing
platform (i.e., Spark) to speed up task execution and the cloud

†Yu Zheng is the correspondence author of this paper.

Cloud 
Storage

ST Query

Map-
Matched

Trajectory

Statistics Visual.

Azure Blob Azure Table Azure Spark

Cloud Platform

Trajectory Preprocessing Task

Applications

Urban Planning

Path Recommendation

Traffic Modeling

Raw GPS Logs

Noise 
Filtering

Map 
Matching

Index 
Building

Trajectory 
Segmentation

Organized 
Trajectories

CloudTP

Fig. 1. System Overview.

storage to help index building. When the preprocessing is
done, the trajectory data is organized in the cloud storage
with ID-temporal and spatio-temporal indexes. CloudTP also
provides an interface to retrieve the results (e.g., map-matched
trajectories), as well as dataset statistics and visualizations to
support aforementioned applications. It covers the following
sub-tasks in the trajectory preprocessing:

• Noise Filtering, which filters abnormal GPS points, e.g.,
the locations of readings drift significantly out of the
range, as these error GPS readings may incur problems
in the later data mining and modeling tasks.

• Trajectory Segmentation, which not only detects latent
information, e.g., stay points [6], but also reduces trajec-
tory computational complexity.

• Map Matching, which transforms a GPS point sequence
to a set of road segments. It is an essential step in road
network related applications.

• Index Building, which builds ID-temporal index and
spatio-temporal index upon the preprocessed data and
organizes them in the cloud storage for query efficiency.

The flexibility of our proposed system is two-fold: 1)
Multiple traveling modes support. All the parameters related
to traveling modes are configurable in CloudTP. 2) Pluggable
processing modules. Advanced users can customize processing
algorithms.

In order to show the capability and flexibility of CloudTP,
we demonstrate three scenarios: 1) Normal users use CloudTP
to submit jobs and retrieve processed results, 2) Advanced
users design custom trajectory processing modules and replace
the defaults in CloudTP, 3) A real urban application is demon-
strated by leveraging the power of CloudTP.



VisualizationCustom Data Retrieval 

U
s

er
 I

n
te

ra
c

ti
n

g
D

is
tr

ib
u

te
d

 
P

ro
c

e
s

si
n

g

ID-temporal Query 
Spatio-temporal Query

Preprocessing Job Submitting

Dataset Parameters

Data Access
Submit Job Analysis

Advanced User Normal User

Customize Modules

Algorithms

Noise Filtering Trajectory Segmentation Statistic AnalysisMap Matching Index Building

Fig. 2. System framework of CloudTP.

II. PRELIMINARY

A. Basic Concepts

Azure Storage. Azure Storage provides reliable, scalable
storage services including Blob Storage and Table Storage.
Blob Storage stores unstructured object data, which is useful
to store raw GPS logs uploaded by users and statistic analysis
results. Table Storage stores structured datasets. It is a NoSQL
key-attribute data store and each entity in a table is uniquely
identified by two-level keys, PartitionKey (PK) and
RowKey (RK). Entities with sequential keys improve the
performance of range queries, which is suitable to construct
the temporal index over preprocessed trajectories.
Apache Spark. Apache Spark is a general in-memory dis-
tributed computing framework. All the data to be processed
will be transformed into Spark core data structure, i.e., Re-
silient Distributed Dataset (RDD), which is a partitioned col-
lection of data elements distributed over the cluster. Spark sup-
ports multiple external data sources, including Windows Azure
Storage Blob (WASB). As a result, we can load raw GPS logs
directly from Azure Blob to Spark. Trajectory preprocessing
can be regarded as RDD transformation operations (e.g., map),
while index building and statistic analysis correspond to RDD
action operations (e.g., foreach, count).

B. System Overview
The framework of CloudTP is shown in Fig. 2, which

contains two layers. The distributed processing layer receives
raw GPS logs, efficiently processes, indexes and stores the
data in a distributed way. Details will be introduced in Section
III. The user interacting layer delivers the job requests of
users, and provides an interface for preprocessed data retrieval
and statistic analysis. Advanced users can also design custom
algorithms for replacement when submitting jobs. Details will
be demonstrated in Section IV.

III. DISTRIBUTED PROCESSING LAYER DESIGN

A. Noise Filtering
The noise filtering step filters noise points in raw GPS logs

to make later algorithms work correctly.
Implementation. A GPS point is represented by a triple:
timestamp t, latitude lat, and longitude lng. Each raw GPS

log is encapsulated into class GPSTraj, which is a list of
time-ordered GPS points with an object ID. The noise filtering
process can be regarded as a map operation to transform
raw RDD[GPSTraj] into cleaned RDD[GPSTraj], which
is executed in parallel. The built-in noise filtering algorithm is
the heuristic-based outlier detection, which has been used in
many applications [6], [7]. It removes points with abnormal
speed. The speed threshold (Max Speed) is tunable.
Customization. Advanced users can override filter()
method to define their own filters. The input and output of
the method are both GPSTrajs.

B. Trajectory Segmentation

In the segmentation step, cleaned GPS logs will be seg-
mented into several shorter trajectories based on some criteria.
Implementation. Since each cleaned GPS log may produce
several trajectories after segmentation, for further processing
convenience, we collect segmented trajectories in each log to
form a single RDD[GPSTraj] using flatMap. We provide
two commonly used algorithms: a stay point-based [8] method,
which segments a trajectory according to stay points, and a
time interval-based [6] method, which segments a trajectory
if the time interval of two consecutive points is longer than a
threshold. Parameters, e.g., max stay time (MST), max stay
distance (MSD), and max time interval, can be tuned for
different purposes.
Customization. Advanced users can override segment()
method to define their own segment algorithms. This method
receives a GPSTraj and returns a list of GPSTrajs.

C. Map Matching

The map matching step incorporates road networks to trans-
form GPS trajectories into map-matched trajectories, which
reflects the movements of objects on the road.
Implementation. The details of map matching are shown in
the left part of Fig. 3. Different from previous steps, we call
repartition(M) (M is the number of partitions after the
transformation) to shuffle and create more partitions before
running the map matching algorithm. Since Spark can only run
one concurrent task on each partition, the number of partition
is a key factor for parallelism. The reasons for repartitioning



are based on two observations. On one hand, after trajec-
tory segmentation, we can find some objects moving more
frequently than others, which leads to imbalanced task distri-
bution among partitions. On the other hand, as there are much
more segmented trajectories than moving objects, we should
increase the number of partitions to improve parallelism. After
that, we can call map to execute the map matching task. Each
map-matched trajectory MMTraj is represented by a list of
time-ordered map-matched entities with an object ID, where
each map-matched entity is a triple: road segment ID edgeID,
enter time tenter and leave time tleave. An interactive voting-
based map matching algorithm [9] is used as default, since
it has a good performace even if the sampling rate is low.
Whether the matching should follow the road direction (Ingore
Road Direction) is tunable.
Customization. Advanced users can also implement other
algorithms by overriding match() method. This method
receives a GPSTraj and returns a MMTraj.

Partition

Partition

RDD[GPSTraj]

Partition

Partition

Partition

.repartition(M)

RDD[GPSTraj]

Partition

Partition

Partition

.map()

RDD[MMTraj]

Partition

Partition

.groupByKey(N)

RDD[OID,List[MMTraj]]

...

MMTraj 
ID Table

.foreach()

Partition

Partition

Partition

RDD[OID,MMTraj]

Map matching processing ID-temporal indexing

Fig. 3. Map matching and index building.

D. Index Building
In this step, the preprocessed results from previous steps,

i.e., segmented trajectories and map-matched trajectories, will
be indexed and stored to Azure Table for query. Moreover, if
the stay point method is enabled during the segmentation, we
record the stay points of each object as well for different appli-
cation scenarios, e.g., mining interesting travel sequences [8].

As aforementioned, PK and RK are ideal choices for tempo-
ral dimension indexes. For example, for segmented trajecto-
ries, we treat each GPS point as a table entity, whose PK and
RK represent the time that is accurate to hour and the exact
time of the point respectively. More specifically, if a point is
generated at 16:23:08 on Feb 3rd, 2017, its PK and RK are set
as 2017020316 and 20170203162308 respectively. Key
design details can be found in our previous works [10], [11].
ID-temporal Indexing. The segmented trajectories, stay
points, and map-matched trajectories are stored in correspond-
ing tables named by object ID. For example, in the right
part of Fig. 3, we first assign a key to each map-matched
trajectory, which is the object ID it belongs to. We then
call groupByKey(N) to group trajectories according to the
keys, which can reduce the number of partitions to N. Finally,
each group of trajectories is inserted into corresponding table
(identified by the object ID) in batch using foreach, which
avoids the high I/O overhead of frequent small writings. To
answer ID-temporal query, we first find the object ID-named
table, and then filter the temporal range based on keys.
Spatio-temporal Indexing. GPS points in the segmented
trajectories and stay points, are stored in the corresponding

tables named by space. We partition the whole space into
uniform grids (other static partition techniques will work as
well), and assign a key to each spatial data, which is the grid
ID it belongs to. Then, the records grouped by grids are stored
in corresponding grid tables like ID-temporal indexing. In each
table entity, we add its object ID to the original RK as suffix
to guarantee the uniqueness, e.g., 20170203162308_001.
Due to the cheap storage price and the requirement of query
efficiency, the data is actually copied into two copies, one
of which is organized by moving objects and the other is
organized by spatial grids. As for spatio-temporal query, we
first find the grid IDs intersecting with the query range, and
then filter the temporal range in each grid ID-named table.

E. Statistic Analysis

Some statistics, such as the number of objects, the number
of segmented trajectories, the number of points, spatial mini-
mum bounding box and dataset average sampling rate can be
easily collected from the cached RDD. These statistics will
be stored in Azure Blob for later visualization. The spatial
and temporal distributions of segmented trajectories and stay
points are also stored in Azure Blob for later visualization.

IV. DEMONSTRATION SCENARIOS

A. Normal Users

As shown in Fig. 4, normal users can upload raw trajectory
dataset to Azure Blob, specify the road networks of a city, tune
parameters and submit their jobs through the CloudTP client.
Each job will be assigned a unique token. There is a group of
radio buttons for traveling mode selection. If one of them is
selected, the recommended algorithms and default parameters
for each module will be set. When Custom is selected, these
settings can be tuned based on users’ domain knowledge and
requirement. Once submitted, the request will be delivered to
the Spark cluster through our back-end server.

Fig. 4. CloudTP upload client.

After the job is finished, users can obtain the preprocessing
results and statistic summaries in our CloudTP result view-
ing interface [12] with the job unique token. As shown in
Fig. 5, the Data Statistics panel displays the overall dataset
statistic summaries. The Map View panel is initialized in
the spatial center of the dataset. The white buttons on the



Query Spatial 
Range

Fig. 5. CloudTP result viewing interface.

right is designed for trajectory/stay point spatial heatmap
switching. The Data Distributions panel is used for the dataset
distribution visualization. The upper two histograms show the
start time distributions of trajectories and stay points over the
whole day, respectively. The lower two histograms show the
trip duration and trip distance distributions of the trajectories
respectively. The Data Retrieval panel is the query area. Users
can issue ID-temporal query and spatio-temporal query for
organized trajectories or stay points. There are two tabs for ID-
temporal and spatio-temporal query switching. For example,
when Spatio-Temporal tab is selected, users can draw a spatial
range on the map as shown in the blue rectangle, specify a
temporal range, and select a data type. After users clicking the
Query button, the query results will be displayed in the right
result panel, and the corresponding data (the trajectory in red)
will be visualized. Users can also click the Generate button
to download corresponding dataset.

Fig. 6. Segmenter module customization.
B. Advanced Users

Advanced users can design their own custom processing
modules in each step. For example, if an advanced user wants
to segment GPS logs into trajectories with equal number of
points, she can design her own module MySegmenter by
implementing the given interface. The pseudo code is shown
in Fig. 6. The complied codes in jar archive can be uploaded
from the client, and the corresponding class name needs to be
specified for replacement, as shown in the Step 2 of Fig. 4.

C. Example Application

CloudTP was used in our previous work [3], which provides
suggestion on bike lane construction based on sharing-bikes’
trajectories, as shown in Fig. 7(a). A fundamental step in
this work is to preprocess the bike trajectories and obtain
the map-matched results. In the noise filtering module, we
set the maximum speed to 6 m/s by leveraging the flexibility
of CloudTP. Since the trip information should be reserved
to reflect users’ real demands in this application, we simply
remove the segmentation module. In the map matching step,
we check the Ignore Road Direction option to loose the
matching constraint. At first, it took us 2 days to match
one-week trajectories (about 57 thousands trajectories) on the
map on a single server with 8 cores and 56 GB RAM. The
processing time was significantly reduced to 30 minutes using
CloudTP with 5 data nodes (8 cores, 28GB RAM) in the Spark
cluster. Finally, the one-month trajectories can be successfully
preprocessed within 2 hours, with basic statistics and distribu-
tions automatically collected, as shown in Fig. 7(b).

(a) Planning results. (b) Trip temporal distribution.

Fig. 7. Bike lane planning.
ACKNOWLEDGMENT

The work was supported by the National Natural Science
Foundation of China (Grant No. 61672399, No. U1609217)
and the China National Basic Research Program (973 Program,
No. 2015CB352400).

REFERENCES

[1] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM TIST, vol. 5, no. 3,
p. 38, 2014.

[2] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang, “Stochastic
skyline route planning under time-varying uncertainty,” in ICDE. IEEE,
2014, pp. 136–147.

[3] J. Bao, T. He, S. Ruan, Y. Li, and Y. Zheng, “Planning bike lanes based
on sharing-bikes’ trajectories,” in SIGKDD. ACM, 2017, pp. 1377–
1386.

[4] W. Luo, H. Tan, L. Chen, and L. M. Ni, “Finding time period-based
most frequent path in big trajectory data,” in SIGMOD. ACM, 2013,
pp. 713–724.

[5] R. Li, S. Ruan, J. Bao, Y. Li, Y. Wu, and Y. Zheng, “Querying massive
trajectories by path on the cloud,” SIGSPATIAL. ACM, 2017.

[6] Y. Zheng, “Trajectory data mining: An overview,” ACM TIST, 2015.
[7] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from

the physical world,” in SIGKDD. ACM, 2011, pp. 316–324.
[8] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations

and travel sequences from gps trajectories,” in WWW, 2009.
[9] J. Yuan, Y. Zheng, X. Xie, C. Zhang, and G. Sun, “An interactive voting-

based map matching algorithm,” in MDM, May 2010.
[10] J. Bao, R. Li, X. Yi, and Y. Zheng, “Managing massive trajectories on

the cloud,” in SIGSPATIAL. ACM, 2016.
[11] R. Li, S. Ruan, J. Bao, and Y. Zheng, “A cloud-based trajectory data

management system,” SIGSPATIAL. ACM, 2017.
[12] “CloudTP Web UI,” http://cloudtp.urban-computing.com/, 2017.


