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Forecasting the flow of crowds is of great importance to traffic management and public 
safety, and very challenging as it is affected by many complex factors, including spatial 
dependencies (nearby and distant), temporal dependencies (closeness, period, trend), and 
external conditions (e.g. weather and events). We propose a deep-learning-based approach, 
called ST-ResNet, to collectively forecast two types of crowd flows (i.e. inflow and outflow) 
in each and every region of a city. We design an end-to-end structure of ST-ResNet based 
on unique properties of spatio-temporal data. More specifically, we employ the residual 
neural network framework to model the temporal closeness, period, and trend properties 
of crowd traffic. For each property, we design a branch of residual convolutional units, each 
of which models the spatial properties of crowd traffic. ST-ResNet learns to dynamically 
aggregate the output of the three residual neural networks based on data, assigning 
different weights to different branches and regions. The aggregation is further combined 
with external factors, such as weather and day of the week, to predict the final traffic of 
crowds in each and every region. We have developed a real-time system based on Microsoft 
Azure Cloud, called UrbanFlow, providing the crowd flow monitoring and forecasting in 
Guiyang City of China. In addition, we present an extensive experimental evaluation using 
two types of crowd flows in Beijing and New York City (NYC), where ST-ResNet outperforms 
nine well-known baselines.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Predicting crowd flows in a city is of great importance to traffic management, risk assessment, and public safety [2]. For 
instance, massive crowds of people streamed into a strip region at the 2015 New Year’s Eve celebrations in Shanghai, result-
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Fig. 1. Crowd flows in a region.

ing in a catastrophic stampede that killed 36 people. In mid-July of 2016, hundreds of “Pokemon Go” players ran through 
New York City’s Central Park in hopes of catching a particularly rare digital monster, leading to a dangerous stampede 
there. If one can predict the crowd flow in a region, such tragedies can be mitigated or prevented by utilizing emergency 
mechanisms, such as conducting traffic control, sending out warnings, or evacuating people, in advance.

In this paper, we predict two types of crowd flows [3]: inflow and outflow, as shown in Fig. 1(a). Inflow is the total 
traffic of crowds entering a region from other places during a given time interval. Outflow denotes the total traffic of crowds 
leaving a region for other places during a given time interval. Both types of flows track the transition of crowds between 
regions. Knowing them is very beneficial for risk assessment and traffic management. Inflow/outflow can be measured by 
the number of pedestrians, the number of cars driven nearby roads, the number of people traveling on public transportation 
systems (e.g. metro, bus), or all of them together if data is available. Fig. 1(b) presents an illustration. We can use mobile phone 
signals to measure the number of pedestrians, showing that the inflow and outflow of r2 are (3, 1), respectively. Similarly, 
using the GPS trajectories of vehicles, two types of flows are (0, 3), respectively. Therefore, the total inflow and outflow 
of r2 are (3, 4), respectively. Apparently, predicting crowd flows can be viewed as a kind of spatio-temporal prediction 
problem [2].

Deep learning [4] has been used successfully in many applications, and is considered to be one of the most cutting-edge 
artificial intelligence (AI) techniques. Exploring these techniques for spatio-temporal data is of great importance to a series 
of various spatio-temporal applications, including urban planning, transportation, the environment, energy, social, economy, 
public safety and security [2]. Although two main types of deep neural networks (DNNs) have considered a sort of spatial 
or temporal property: 1) convolutional neural networks (CNNs) for capturing spatial structures; 2) recurrent neural net-
works (RNNs) for learning temporal dependencies. It is still very challenging to apply these existing AI techniques for such 
spatio-temporal prediction problem because of the following three complex factors:

1. Spatial dependencies.

Nearby The inflow of Region r2 (shown in Fig. 1(a)) is affected by outflows of nearby regions (like r1). Likewise, the 
outflow of r2 would affect inflows of other regions (e.g. r3). The inflow of region r2 would affect its own 
outflow as well.

Distant The flows can be affected by that of distant regions. For instance, people who lives far away from the office 
area always go to work by metro or highway, implying that the outflows of distant regions directly affect the 
inflow of the office area.

2. Temporal dependencies.

Closeness The flow of crowds in a region is affected by recent time intervals, both near and far. For instance, a traffic 
congestion occurring at 8:00am will affect that of 9:00am. And the crowd flows of today’s 16th time interval3
is more similar to that of yesterday’s 16th time interval than that of today’s 20th time interval.

Period Traffic conditions during morning rush hours may be similar on consecutive weekdays, repeating every 24 
hours.

Trend Morning rush hours may gradually happen later as winter comes. When the temperature gradually drops and 
the sun rises later in the day, people get up later and later.

3. External influence. Some external factors, such as weather conditions and events may change the flow of crowds 
tremendously in different regions of a city. For example, a thunderstorm affects the traffic speed on roads and fur-
ther changes the flows of regions.

3 Assume that half-hour is a time interval, 16th time interval means 7:30am–8:00am.
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Fig. 2. Regions in Beijing: (a) Grid-based map segmentation; (b) inflows in every region of Beijing. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

To tackle above mentioned challenges, we here explore DNNs for spatio-temporal data, and propose a deep spatio-
temporal residual network (ST-ResNet) to collectively predict inflow and outflow of crowds in every region. Our contributions 
are five-fold:

• ST-ResNet employs convolution-based residual networks to model both nearby and distant spatial dependencies between 
any two regions in a city, while ensuring the model’s prediction accuracy is not comprised by the deep structure of the 
neural network.

• We summarize the temporal properties of crowd flows into three categories, consisting of temporal closeness, period, 
and trend. ST-ResNet uses three different residual networks to model these properties, respectively.

• ST-ResNet dynamically aggregates the output of the three aforementioned networks, assigning different weights to 
different branches and regions. The aggregation is further combined with external factors (e.g. weather).

• We evaluate our approach using Beijing taxicabs’ trajectories and meteorological data, and NYC bike trajectory data. The 
results demonstrate the advantages of our approach compared with 9 baselines.

• We develop a real-time crowd flow monitoring and forecasting system using ST-ResNet. And our solution is based on 
the Cloud and GPU servers, providing powerful and flexible computational environments.

The rest of this paper is organized as follows. In Section 2, we formally describe the crowd flow prediction problem. 
Section 3 describes the proposed deep spatio-temporal residual networks for predicting crowd flows. Section 4 overviews 
the real-time crowd flow forecasting system based on ST-ResNet and Microsoft Azure Cloud. We present the evaluation in 
Section 5 and summarized the related work in Section 6.

The differences between this paper and our earlier work [1] are four aspects. First, we have deployed a cloud-based 
system that continuously forecasts the flow of taxicabs in each and every region of Guiyang City in China, showcasing the 
capability of ST-ResNet in handling real-world problems. The implementation of the cloud-based system is also introduced 
in Section 4 of this paper. Second, we extend ST-ResNet from a one-step ahead prediction to a multi-step ahead prediction, 
enabling the prediction of crowd flows over a farther future time (Section 3.4). Third, we conduct more comprehensive 
experiments on crowd flow prediction, showcasing the effectiveness and robustness of ST-ResNet: i) comparing our method 
with more advanced baselines (e.g. three different variants of recurrent neural networks) (Section 5.2); ii) testing more 
network architectures for ST-ResNet (Section 5.3); iii) adding the experiments of multi-step ahead prediction (Section 5.4); 
iv) discussing the performance of our method changing over different cloud resources (Section 5.5). Fourth, we have ex-
plored more related works (in Section 6), clarifying the differences and connections to the-state-of-the-art. This helps better 
position our research in the community.

2. Preliminary

We first briefly revisit the crowd flow prediction problem [3].

Definition 1 (Region [3]). There are many definitions of a location in terms of different granularities and semantic meanings. 
In this study, we partition a city into an I × J grid map based on the longitude and latitude where a grid cell denotes a 
region, as shown in Fig. 2(a).

Definition 2 (Inflow/outflow [3]). Let P be a collection of trajectories at the tth time interval. For a grid cell (i, j) that lies at 
the ith row and the jth column, the inflow and outflow of the crowds at the time interval t are defined respectively as

xin,i, j
t =

∑
T r∈P

|{k > 1|gk−1 /∈ (i, j) ∧ gk ∈ (i, j)}|

xout,i, jt =
∑
T r∈P

|{k ≥ 1|gk ∈ (i, j) ∧ gk+1 /∈ (i, j)}|



150 J. Zhang et al. / Artificial Intelligence 259 (2018) 147–166

Fig. 3. ST-ResNet architecture. Conv: Convolution; ResUnit: Residual Unit; FC: Fully-connected.

where T r : g1 → g2 → ·· · → g|T r| is a trajectory in P, and gk is the geospatial coordinate; gk ∈ (i, j) means the point gk lies 
within grid (i, j), and vice versa; | · | denotes the cardinality of a set.

At the tth time interval, inflow and outflow in all I × J regions can be denoted as a tensor Xt ∈R
2×I× J where (Xt)0,i, j =

xin,i, j
t , (Xt)1,i, j = xout,i, jt . The inflow matrix is shown in Fig. 2(b).

Formally, for a dynamical system over a spatial region represented by a I × J grid map, there are 2 types of flows in 
each grid over time. Thus, the observation at any time can be represented by a tensor X ∈ R

2×I× J .

Problem 1. Given the historical observations {Xt |t = 0, · · · , n − 1}, predict Xn .

3. Deep spatio-temporal residual networks

Recurrent neural networks (RNNs), like long-short term memory (LSTM), is capable of learning long-range temporal 
dependencies. Using RNNs, however, to model temporal period and trend, it needs very long input sequences (e.g. length =
1344),4 which makes the whole training process non-trivial (see Section 5.2 for empirical evaluation). According to the 
ST domain knowledge, we know that only a few previous keyframes influence the next keyframe. Therefore, we leverage 
temporal closeness, period, trend to select keyframes for modeling. Fig. 3 presents the architecture of ST-ResNet, which is 
comprised of four major components modeling temporal closeness, period, trend, and external influence, respectively.

As illustrated in the top-right part of Fig. 3, we first turn inflow and outflow throughout a city at each time interval into 
a 2-channel image-like matrix respectively, using the approach introduced in Definitions 1 and 2. We then divide the time 
axis into three fragments, denoting recent time, near history and distant history. The 2-channel flow matrices of intervals in 
each time fragment are then fed into the first three components separately to model the aforementioned three temporal 
properties: closeness, period and trend, respectively. The first three components share the same network structure with a 
convolutional neural network followed by a Residual Unit sequence. Such structure captures the spatial dependency between 
nearby and distant regions. In the external component, we manually extract some features from external datasets, such as 
weather conditions and events, feeding them into a two-layer fully-connected neural network. The outputs of the first 
three components are fused as XRes based on parameter matrices, which assign different weights to the results of different 
components in different regions. XRes is further integrated with the output of the external component XExt . Finally, the 
aggregation is mapped into [−1, 1] by a Tanh function, which yields a faster convergence than the standard logistic function 
in the process of back-propagation learning [5] (Section 5.3.5 gives the empirical evaluation and discussion).

3.1. Structures of the first three components

The first three components (i.e. closeness, period, trend) share the same network structure, which is composed of two 
sub-components: convolution and residual unit, as shown in Fig. 4.

4 Assume that half-an-hour is a time interval, 4-week sequence’s length is equal to 48 × 7 × 4 = 1344.
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Fig. 4. Convolution and residual unit.

Fig. 5. Narrow and same types of convolution. The filter has size 3× 3.

Convolution. A city usually has a very large size, containing many regions with different distances. Intuitively, the flow 
of crowds in nearby regions may affect each other, which can be effectively handled by the convolutional neural network 
(CNN) that has shown its powerful ability to hierarchically capture the spatial structural information [6]. In addition, subway 
systems and highways connect two locations with a far distance, leading to the dependency between distant regions. In 
order to capture the spatial dependency of any region, we need to design a CNN with many layers because one convolution 
only accounts for spatial near dependencies, limited by the size of their kernels. The same problem also has been found in 
the video sequence generating task where the input and output have the same resolution [7]. Several methods have been 
introduced to avoid the loss of resolution brought about by subsampling while preserving distant dependencies [8]. Being 
different from the classical CNN, we do not use subsampling, but only convolutions [9]. As shown in Fig. 4(a), there are 
three multiple levels of feature maps that are connected with a few convolutions. We find that a node in the high-level 
feature map depends on nine nodes of the middle-level feature map, those of which depend on all nodes in the lower-level 
feature map (i.e. input). It means one convolution naturally captures spatial near dependencies, and a stack of convolutions 
can further capture distant even citywide dependencies.

The closeness component of Fig. 3 adopts a few 2-channel flows matrices of intervals in the recent time to model tem-
poral closeness dependency. Let the recent fragment be [Xt−lc , Xt−(lc−1), · · · , Xt−1], which is also known as the closeness
dependent sequence. We first concatenate them along with the first axis (i.e. time interval) as one tensor X(0)

c ∈ R
2lc×I× J , 

which is followed by a convolution (i.e. Conv1 shown in Fig. 3) as:

X(1)
c = f

(
W (1)

c ∗ X(0)
c + b(1)

c

)
(1)

where ∗ denotes the convolution in a convolutional operator; f is an activation function, e.g. the rectifier f (z) := max(0, z)
[10]; W (1)

c , b(1)
c are the learnable parameters in the first layer.

The classical convolution has smaller output size than input size, namely, narrow convolution, as shown in Fig. 5(a). 
Assume that the input size is 5 × 5 and the filter size is 3 × 3 with stride 1, the output size is 3 × 3 if using narrow 
convolution. In our task, the final output size should be same as the size of the input (i.e. I × J ). For this goal, we employ a 
special type of convolution, i.e. same convolution (see Fig. 5(b)), which allows a filter to go outside the border of an input, 
padding each area outside the border with a zero.
Residual unit. It is hard to train very deep convolutional networks though the well-known activation function (e.g. ReLU) 
and regularization techniques are applied [11,10,12]. On the other hand, we still need a very deep network to capture very 
large citywide dependencies. For a typical crowd flow data, assume that the input size is 32 × 32, and the kernel size of 
convolution is fixed to 3 × 3, if we want to model citywide dependencies (i.e. each node in high-level layer depends on 
all nodes of the input), it needs more than 15 consecutive convolutional layers. To address this issue, we employ residual 
learning [13] in our model, which have been demonstrated to be very effective for training super deep neural networks of 
over 1000 layers.

In our ST-ResNet (see Fig. 3), we stack L residual units upon Conv1 as follows,

X(l+1)
c = X(l)

c +F(X(l)
c ; θ(l)

c ), l = 1, · · · , L (2)

where F is the residual function (i.e. two combinations of “ReLU + Convolution”, see Fig. 4(b)), and θ(l) includes all learnable 
parameters in the lth residual unit. We also attempt Batch Normalization (BN) [11] that is added before ReLU. On top of the 
Lth residual unit, we append a convolutional layer (i.e. Conv2 shown in Fig. 3). With 2 convolutions and L residual units, 
the output of the closeness component of Fig. 3 is X(L+2)

c .
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Fig. 6. Effects of holidays and weather in Office Area of Beijing (the region is shown in Fig. 2(a)).

Likewise, using the above operations, we can construct the period and trend components of Fig. 3. Assume that 
there are lp time intervals from the period fragment and the period is p. Therefore, the period dependent sequence 
is [Xt−lp ·p, Xt−(lp−1)·p, · · · , Xt−p]. With the convolutional operation and L residual units like in Eqs. (1) and (2), the 
output of the period component is X(L+2)

p . Meanwhile, the output of the trend component is X(L+2)
q with the input 

[Xt−lq ·q, Xt−(lq−1)·q, · · · , Xt−q] where lq is the length of the trend dependent sequence and q is the trend span. Note that 
p and q are actually two different types of periods. In the detailed implementation, p is equal to one-day that describes 
daily periodicity, and q is equal to one-week that reveals the weekly trend.

3.2. The structure of the external component

Traffic flows can be affected by many complex external factors, such as weather and events. Fig. 6(a) shows that crowd 
flows during holidays (Chinese Spring Festival) can be significantly different from the flows during normal days. Fig. 6(b) 
shows that heavy rain sharply reduces the crowd flows at Office Area compared to the same day of the latter week. Let Et
be the feature vector that represents these external factors at predicted time interval t . In our implementation, we mainly 
consider weather, holiday event, and metadata (e.g. DayOfWeek, Weekday/Weekend). The details are introduced in Table 2. 
To predict flows at time interval t , the holiday event and metadata can be directly obtained. However, the weather at future 
time interval t is unknown. Instead, one can use the forecasting weather at time interval t or the approximate weather at 
time interval t − 1. Formally, we stack two fully-connected layers upon Et , the first layer can be viewed as an embedding 
layer for each sub-factor followed by an activation. The second layer is used to map low to high dimensions that have the 
same shape as Xt . The output of the external component of Fig. 3 is denoted as XExt with the parameters θExt .

3.3. Fusion

In this section, we discuss how to fuse four components of Fig. 3. We firstly fuse the closeness, period, and trend compo-
nents with a parametric-matrix-based fusion method, which is then further combined with the external component.

Figs. 7(a) and (d) show the ratio curves using Beijing trajectory data presented in Table 2 where x-axis is time gap 
between two time intervals and y-axis is the average ratio value between arbitrary two inflows that have the same time 
gap. The curves from two different regions all show an empirical temporal correlation in time series, namely, inflows of 
recent time intervals are more relevant than ones of distant time intervals, which implies temporal closeness. The two curves 
have different shapes, which demonstrates that different regions may have different characteristics of closeness. Figs. 7(b) 
and (e) depict inflows at all time intervals of 7 days. We can see the obvious daily periodicity in both regions. In Office Area, 
the peak values on weekdays are much higher than ones on weekends. Residential Area has similar peak values for both 
weekdays and weekends. Figs. 7(c) and (f) describe inflows at a certain time interval (9:00pm–9:30pm) of Tuesday from 
March 2015 and June 2015. As time goes by, the inflow progressively decreases in Office Area, and increases in Residential 
Area. It shows the different trends in different regions. In summary, inflows of two regions are all affected by closeness, 
period, and trend, but the degrees of influence may be very different. We also find the same properties in other regions as 
well as their outflows.

Above all, the different regions are all affected by closeness, period and trend, but the degrees of influence may be 
different. Inspired by these observations, we propose a parametric-matrix-based fusion method.

Parametric-matrix-based fusion. We fuse the first three components (i.e. closeness, period, trend) of Fig. 3 as follows

XRes = Wc ◦ X(L+2)
c +Wp ◦ X(L+2)

p +Wq ◦ X(L+2)
q ∈R

2×I× J (3)

or, equivalently,

xk,i, jRes = wk,i, j
c · xk,i, jc + wk,i, j

p · xk,i, jp + wk,i, j
q · xk,i, jq ,∀k ∈ {0,1},∀i ∈ {0, · · · , I − 1},∀ j ∈ {0, · · · , J − 1} (4)
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Fig. 7. Temporal dependencies (Office Area and Residential Area are shown in Fig. 2(a)).

where ◦ is Hadamard product (i.e. element-wise multiplication), wk,i, j
c ∈ Wc , w

k,i, j
p ∈ Wp and wk,i, j

q ∈ Wq are the learnable 
parameters that adjust the degrees affected by closeness, period and trend, respectively. xk,i, jRes , xk,i, jc , xk,i, jp , and xk,i, jq are 
respectively an entry of XRes, X

(L+2)
c , X(L+2)

p , and X(L+2)
q .

Fusing the external component. We here directly merge the output of the first three components with that of the external
component, as shown in Fig. 3. Finally, the predicted value at the tth time interval, denoted by X̂t , is defined as

X̂t = tanh(XRes + XExt) (5)

where tanh is a hyperbolic tangent that ensures the output values are between −1 and 1.
Our ST-ResNet can be trained to predict Xt from three sequences of flow matrices and external factor features by mini-

mizing mean squared error between the predicted flow matrix and the true flow matrix:

L(θ) = ‖Xt − X̂t‖22 (6)

where θ are all learnable parameters in the ST-ResNet.

3.4. Algorithms and optimization

Algorithm 1 outlines the ST-ResNet training process. We first construct the training instances from the original sequence 
data (lines 1–6). Then, ST-ResNet is trained via backpropagation and Adam [14] (lines 7–11).

After training, the learned ST-ResNet model M is obtained for the single- or multi-step look-ahead prediction. the 
process of which is summarized in Algorithm 2. Some types of external features (i.e. weather) used here are different from 
that in Algorithm 1. In the training process, we use the true weather data, which is replaced by the forecasted weather data 
in Algorithm 2.

3.5. Discussion on different approaches to construct inputs

We here present two different approaches to construct inputs of closeness, period, and trend components of Fig. 3. Fig. 8
gives an illustration. Let period (p) and trend span (q) be 1 day and 1 week, respectively. According to three temporal 
properties (i.e. closeness, period, trend), the original constructing approach (Fig. 8(a)) selects the following key frames:

• dependent inputs of closeness component: [Xt−lc , Xt−(lc−1), · · · , Xt−1].
• dependent inputs of period component: [Xt−lp ·p, Xt−(lp−1)·p, · · · , Xt−p].
• dependent inputs of trend component: [Xt−lq ·q, Xt−(lq−1)·q, · · · , Xt−q].

Based on the original approach, we here introduce two approaches (AVG1 and AVG2) that employ averaging the historical 
frames, in which dependent inputs of closeness component are same with that of the original approach.
AVG1 (Fig. 8(b)): averaging respectively dependent inputs of period and trend components of the original approach as new 
dependent inputs of period and trend components, showing below:
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Algorithm 1: Training of ST-ResNet.
Input: Historical observations: {X0, · · · , Xn−1};

external features: {E0, · · · , En−1};
lengths of closeness, period, trend sequences: lc , lp, lq ;
period: p; trend span: q.

Output: ST-ResNet model M.
// construct training instances

1 D ←− ∅
2 for all available time interval t(1 ≤ t ≤ n − 1) do
3 Sc = [Xt−lc , Xt−(lc−1), · · · , Xt−1]
4 Sp = [Xt−lp ·p, Xt−(lp−1)·p , · · · , Xt−p]
5 Sq = [Xt−lq ·q, Xt−(lq−1)·q, · · · , Xt−q]

// Xt is the target at time t
6 put an training instance ({Sc, Sp, Sq, Et }, Xt) into D

// train the model
7 initialize the parameters θ
8 repeat
9 randomly select a batch of instances Db from D

10 find θ by minimizing the objective (6) with Db

11 until stopping criteria is met
12 output the learned ST-ResNet model M

Algorithm 2: Multi-step Ahead Prediction Using ST-ResNet.
Input: Learned ST-ResNet model: M;

number of look-ahead steps: k;
historical observations: {X0, · · · , Xn−1};
external features: {En, · · · , En+k−1};
lengths of closeness, period, trend sequences: lc , lp, lq ;
period: p; trend span: q.

1 X ←− {X0, · · · , Xn−1} // (i.e. Xt = Xt , ∀t)
2 for t = n to n + k − 1 do
3 Sc = [Xt−lc , Xt−(lc−1), · · · , Xt−1]
4 Sp = [Xt−lp ·p, Xt−(lp−1)·p , · · · , Xt−p ]
5 Sq = [Xt−lq ·q, Xt−(lq−1)·q, · · · , Xt−q]
6 X̂t ←− M(Sc , Sp, Sq, Et )
7 put ̂Xt into X , i.e. Xt = X̂t

8 output {̂Xn, · · · , ̂Xn+k−1}

• dependent input of period component of AVG1: 1
lp

∑lp
i=1 Xt−i·p .

• dependent input of trend component of AVG1: 1
lq

∑lq
i=1 Xt−i·q .

Compared to the original approach, AVG1 has the same raw inputs, but requires a model that has fewer trainable pa-
rameters because its period and trend components both has 1 frame.

AVG2: averaging the frames around same time intervals in the original approach, producing the same number frames as the 
original approach (see Fig. 8(c) for example). Formally, their inputs are below:

• dependent inputs of period component of AVG2: [Xt−lp ·p, Xt−(lp−1)·p, · · · , Xt−p], where Xt− j·p = 1
3 (Xt− j·p−1 + Xt− j·p +

Xt− j·p+1), j = 1, · · · lp .
• dependent inputs of trend component AVG2: [Xt−lq ·q, Xt−(lq−1)·q, · · · , Xt−q]. ∀ j ∈ {1, · · · , lq}, Xt− j·q = 1

5

∑
Xk∈X jweekdays

Xk

if Xt is in weekday or Xt− j·q = 1
2

∑
Xk∈X jweekend

Xk otherwise, where X jweekdays denotes 5 weekdays and X jweekend denotes 

weekend in the previous jth trend span.

Compared to the original approach, AVG2 has the same trainable parameters, but capable of capturing more raw frames.

4. System architecture

Fig. 9 presents the framework of our system, which consists of three major parts: local GPU servers, and the Cloud, and 
users (e.g. website and QR Code), resulting in offline and online data flows, respectively. The local GPU servers store historical 
observations, such as taxi trajectories, meteorological data. The Cloud receive real-time data, including real-time traffic data 
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Fig. 8. Input constructing approaches. Mo: Monday; Tu: Tuesday; We: Wednesday; Th: Thursday; Fr: Friday. Different colors denote different weekdays. 
(Best viewed in color).

Fig. 9. System Framework.

(e.g. trajectories) within a time interval as well as meteorological data. The users access the inflow/outflow data, displaying 
them on websites or smart phone via scanning QR code.

4.1. The cloud

The cloud continuously receives GPS trajectories of taxicabs and crawls meteorological data, and then caches them into a 
Redis.5 A virtual machine (VM) (or VMs) on the Cloud pulls these data from the Redis, and then computes crowd flows ac-
cording to GPS trajectories for each and every region of a city. Meanwhile, the VM extracts the features from meteorological 
data, event data and others. Afterwards, the VM stores the crowd flow data and extracted features into the storage (a part 
of the VM). To save the resource on the cloud (more storages need more expensive payment), we only store the crowd flow 
data and features in past two days. Historical data can be moved to local servers periodically.

We use Azure platform as a service (PaaS). Table 1 details the Azure6 resources for our system. We employ a VM,7 called 
A2 standard in Azure, that has 2 cores and 3.5 GB memory for forecasting the crowd flows in near future. The website and 
web service share a App Service, given the potential heavy accesses by many users. As the historical data is stored in local 
servers, a 6 GB Redis Cache is enough for caching the real-time trajectories in past half-hour, crowd flow data and extracted 
features in past two days, and inferred results.

5 Redis is an in-memory data structure store, used as a database (https://redis .io/).
6 https://azure .microsoft .com.
7 To accelerate the computation, one can choose a more powerful VM, such as D4 standard of Azure that has 8 cores and 28 GB memory.

https://redis.io/
https://azure.microsoft.com
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Table 1
The Azure resources used for our system.

Azure Service Configuration

App Service Standard, 4 cores, 7 GB memory
Virtual Machine A2 standard, 2 cores, 3.5 GB memory
Redis Cache P1 premium, 6 GB

4.2. Local GPU servers

Although all the jobs can be done on the cloud, GPU services on the Cloud is not supported in some areas (e.g. China). 
On the other hand, we need to pay for other cloud services, like storages and I/O bandwidths. Saving unnecessary cost is 
vital for a research prototype. In addition, migrating massive data from local servers up to the cloud is time-consuming 
given the limited network bandwidth. For instance, the historical trajectories can be hundreds of Gigabytes, even Terabytes, 
leading to a very long time for copying the data from local servers to the cloud.

Therefore, we employ a hybrid framework that combines local GPU servers with the cloud. Local GPU servers mainly 
handle the offline training (learning), including three tasks:

• Converting trajectories into inflow/outflow: we first use the massive historical trajectories and employ a calculation 
module to get crowd flow data, then store them in local.

• Extracting features from external data: we fist collect external data (e.g. weather, holiday events) from different data 
sources and fit them into a feature extraction module to get continuous or discrete features, and then store them in 
local.

• Training model: we use above generated crowd flows and external features to train a predictive model via our proposed 
ST-ResNet, and then upload the learned model to the cloud. Note that as the dynamic crowd flows and features are 
stored in the Storage (Azure), we sync up the online data to local servers before each training processing. In this way, 
we are agile to try new ideas (e.g. re-train the model) while greatly reducing expense for a research prototype.

4.3. User interface

Fig. 10(a) presents the website of UrbanFlow [15], where each grid on the map stands for a region and the number 
associated with it denotes its inflow or outflow of crowds. The user can view inflow or outflow via the top-right button 
named “InFlow/OutFlow”. The smaller the number is, the sparser the crowd flow. The color of each grid is determined 
in accordance with its crowd flows, e.g. “red” means “dense” crowd flow and “green” means “sparse” crowd flow. The 
top-right corner of the website shows the buttons which can switch between different types of flows. A user can select any 
grid (representing a region) on the website and click it to see the region’s detailed flows, as shown in Fig. 10(b) where blue, 
black, and green curves indicate flows of yesterday, past, and future times at today, respectively. The bottom of the website 
shows a few sequential timestamps. The heatmap at a certain timestamp will be shown in the website when a user clicks 
the associated timestamp. Intuitively, the user can watch the movie-style heatmaps (Fig. 10(c)) by clicking “play button” at 
the bottom-left of Fig. 10(a). At present, we apply UrbanFlow to the area of Guiyang City, China.8

5. Experiments

In this section, we evaluate our ST-ResNet on two types of crowd flows in Beijing and NYC against 9 baselines.

5.1. Settings

Datasets. We use two different sets of data as shown in Table 2. Each dataset contains two sub-datasets: trajectories and 
weather, as detailed as follows.

• TaxiBJ: Trajectory data is the taxicab GPS data and meteorology data in Beijing from four time intervals: 1st Jul. 
2013–30th Otc. 2013, 1st Mar. 2014–30th Jun. 2014, 1st Mar. 2015–30th Jun. 2015, 1st Nov. 2015–10th Apr. 2016. 
Using Definition 2, we obtain two types of crowd flows. We choose data from the last four weeks as the testing data, 
and all data before that as training data.

• BikeNYC: Trajectory data is taken from the NYC Bike system in 2014, from Apr. 1st to Sept. 30th. Trip data includes: 
trip duration, starting and ending station IDs, and start and end times. Among the data, the last 10 days are chosen as 
testing data, and the others as training data.

Baselines. The baselines and our models are outlined as follows.

8 http://urbanflow.sigkdd .com .cn/ or http://urbanflow.chinacloudsites .cn/.

http://urbanflow.sigkdd.com.cn/
http://urbanflow.chinacloudsites.cn/
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Fig. 10. Web user interface of UrbanFlow.

Table 2
Datasets (holidays include adjacent weekends).

Dataset TaxiBJ BikeNYC

Data type Taxi GPS Bike rent
Location Beijing New York

Time Span 7/1/2013–10/30/2013
3/1/2014–6/30/2014 4/1/2014–9/30/2014
3/1/2015–6/30/2015
11/1/2015–4/10/2016

Time interval 30 minutes 1 hour
Gird map size (32, 32) (16, 8)

Trajectory data
Average sampling rate (s) ∼60 \
# taxis/bikes 34,000+ 6,800+
# available time interval 22,459 4,392

External factors (holidays and meteorology)
# holidays 41 20
Weather conditions 16 types (e.g. Sunny, Rainy) \
Temperature/◦C [−24.6,41.0] \
Wind speed/mph [0,48.6] \

• HA: We predict inflow and outflow of crowds by the average value of historical inflow and outflow in the corresponding 
periods, e.g. 9:00am–9:30am on Tuesday, its corresponding periods are all historical time intervals from 9:00am to 
9:30am on all historical Tuesdays.

• ARIMA: Auto-Regressive Integrated Moving Average (ARIMA) is a well-known model for understanding and predicting 
future values in a time series.

• SARIMA: Seasonal ARIMA. Beyond ARIMA, SARIMA also considers the seasonal terms, capable of both learning closeness 
and periodic dependencies.

• VAR: Vector Auto-Regressive (VAR) is a more advanced spatio-temporal model, which can capture the pairwise relation-
ships among all flows, and has heavy computational costs due to the large number of parameters.

• ST-ANN: It first extracts spatial (nearby 8 regions’ values) and temporal (8 previous time intervals) features, then fed 
into an artificial neural network.

• DeepST [3]: a deep neural network (DNN)-based prediction model for spatio-temporal data, which shows state-of-the-
art results on the crowd flow prediction.

• RNN [37]: recurrent neural network (RNN), a deep learning model, which can capture temporal dependencies. Formally, 
RNN can train on sequences with the arbitrary length. In our experiment, we fix the length of input sequence as one 
of {3, 6, 12, 24, 48, 336}. Taking 48 as example, the dependent input sequence is just a one-day data if the interval time 
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Table 3
Characteristics of baselines. Im: implicit; Ex: explicit; ×: not include; �: include.
Model Spatial Temporal External factors

Intra Inter Closeness Period (daily) Trend (weekly)

HA × × × Im Im ×
ARIMA × × Ex × × ×
SARIMA × × Ex Ex × ×
VAR × � Ex × × ×
ST-ANN × � Ex × × ×
DeepST � � Ex Ex Ex �
RNN-3/6/12/24 × × Ex × × ×
RNN-48 × × Ex Im × ×
RNN-336 × × Ex Im Im ×
ST-ResNet � � Ex Ex Ex �

Table 4
Details of convolutions and residual units.
Layer name Output size Closeness Period Trend

Conv1 32 × 32 3× 3,64 3× 3,64 3× 3,64

ResUnit 1 32 × 32

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

ResUnit 2 32 × 32

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

ResUnit 3 32 × 32

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

ResUnit 4 32 × 32

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

[
3× 3,64
3× 3,64

]
× 2

Conv2 32 × 32 3× 3,2 3× 3,2 3× 3,2

is equal to 30 minutes. Therefore, we have 6 RNN variants, including RNN-3, RNN-6, RNN-12, RNN-24, RNN-48, and 
RNN-336.

• LSTM [16]: Long-short-term-memory network (LSTM), a special kind of RNN, capable of learning long-term temporal 
dependencies. Being same as the setting of RNN, we conduct the experiments on 6 LSTM variants, i.e. LSTM-3, LSTM-6, 
LSTM-12, LSTM-24, LSTM-48, and LSTM-336.

• GRU [17]: Gated-recurrent-unit network, a new kind of RNN, can be used to capture long-term temporal dependencies. 
Being same as the setting of RNN, the following GRU variants are selected as the baselines: GRU-3, GRU-6, GRU-12, 
GRU-24, GRU-48, and GRU-336.

• ST-ResNet: The model proposed in this paper. The number of residual units is set as 12 for the dataset TaxiBJ, and 4 for 
BikeNYC.

• ST-ResNet-AVG1 and ST-ResNet-AVG2: two ST-ResNet variants with same setting, but different input constructing ap-
proaches (see Section 3.5)

Table 3 shows characteristics of these baselines. LSTM and GRU models have the same characteristics as that of RNN. 
For example, the HA model implicitly capture daily period and weekly trend, but cannot capture spatial dependencies or 
external factors; VAR considers the relations between inflow and outflow within a region; ST-ANN leverage the flows nearby 
regions; RNN-336 have assess to daily period and weekly trends, but they are not explicit. Our ST-ResNet can capture all 
spatial and temporal dependencies as well as external factors.
Preprocessing. In the output of the ST-ResNet, we use tanh as our final activation (see Eq. (5)), whose range is between 
−1 and 1. Here, we use the Min-Max normalization method to scale the data into the range [−1, 1]. In the evaluation, 
we re-scale the predicted value back to the normal values, compared with the groundtruth. For external factors, we use 
one-hot coding to transform metadata (i.e. DayOfWeek, Weekend/Weekday), holidays and weather conditions into binary 
vectors, and use Min-Max normalization to scale the Temperature and Wind speed into the range [0, 1].
Hyperparameters. The learnable parameters are initialized using a uniform distribution with the default parameter in Keras 
[18]. The convolutions of Conv1 and all residual units use 64 filters of size 3 × 3, and Conv2 uses a convolution with 2 
filters of size 3 × 3. For example, a 4-residual-unit of ST-ResNet consists of Conv1, 4 residual unit, and Conv2. See Table 4
for the details. The Adam [14] is used for optimization, and the batch size is 32. There are 5 extra hyperparameters in our 
ST-ResNet, of which p and q are empirically fixed to one-day and one-week, respectively. For lengths of the three dependent 
sequences, we set them as: lc ∈ {1, 2, 3, 4, 5}, lp ∈ {1, 2, 3, 4}, lq ∈ {1, 2, 3, 4}. We select 90% of the training data for training 
each model, and the remaining 10% is chosen as the validation set, which is used to early-stop our training algorithm for 
each model based on the best validation score. Afterwards, we continue to train the model on the full training data for a 
fixed number of epochs (e.g. 10, 100 epochs).
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Table 5
Experimental environment.

OS Ubuntu 16.04
Memory 512 GB
CPU Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz
GPU Tesla P100

CUDA version 8.0
cuDNN version 8.0
Keras version 2.0
TensorFlow version 1.3

Evaluation metric: We measure our method by Root Mean Square Error (RMSE)9 as

RMSE =
√

1

z

∑
i

(xi − x̂i)2 (7)

where x and x̂ are the available ground truth and the corresponding predicted value, respectively; z is the number of all 
available ground truths.

Experiments are mainly run on a GPU server, whose detailed information is shown in Table 5. The python libraries, 
including TensorFlow [19] and Keras [18], are used to build our models.

5.2. Evaluation of single-step ahead prediction

In this section, we evaluate the single-step ahead prediction, namely, predicting the crowd flows at time t using the 
historical observations. Table 6 shows the RMSE of all methods on both TaxiBJ and BikeNYC. Our ST-ResNet consistently 
and significantly outperforms all baselines. Specifically, the results on TaxiBJ demonstrates that ST-ResNet (with 12 residual 
units) is relatively 25% better than ARIMA, 36% better than SARIMA, 25% better than VAR, 12% better than ST-ANN, 6%
better than DeepST, 36% to 66% better than RNN, 34% to 58% better than LSTM, 25% to 57% better than GRU. ST-ResNet-
noExt is a degraded version of ST-ResNet that does not consider the external factors (e.g. meteorology data). We can see that 
ST-ResNet-noExt is slightly worse than ST-ResNet, pointing out external factors are always beneficial. DeepST exploits spatio-
temporal CNNs and is clearly better than other baselines. While both ST-ANN and VAR use spatial/temporal information and 
relationships among flows, they are worse than DeepST because they only consider the near spatial information and recent
temporal information. Among the temporal models, GRU and LSTM have similar RMSE, and outperform RNN in average 
because GRU and LSTM both can capture long-term temporal dependencies. However, GRU-336 and LSTM-336 have very 
bad performance as well as RNN-336, which demonstrates RNN-based models cannot capture very long-term dependencies 
(i.e. period and trend). Intuitively, we rank all of these models, as shown in Fig. 11(a).

Being different from TaxiBJ, BikeNYC consists of two different types of crowd flows, including new-flow and end-flow 
[20]. We here adopt a total of 4-residual-unit ST-ResNet, and consider the metadata as external features like DeepST [3]. 
ST-ResNet has relatively from 15% up to 71% lower RMSE than these baselines, demonstrating that our proposed model has 
good generalization performance on other flow prediction tasks. Fig. 11(b) depicts the ranking of these models.

For different input constructing approaches (AVG1 and AVG2 in Section 3.5), we observe ST-ResNet-AVG1 is worst in both 
datasets because it averages the period dependents and trend dependents, though the model complexity reduces, its error 
raises. ST-ResNet-AVG2 is worse than ST-ResNet in TaxiBJ but better in BikeNYC. The reason may be that TaxiBJ has some 
missing time intervals in the data, but there are no missing in BikeNYC, which means ST-ResNet has more training instances 
than ST-ResNet-AVG2 in the incomplete dataset.

5.3. Results of different ST-resnet variants

We here present the results of different ST-ResNet variants, including changing network configurations, network depth, 
and different components used.

5.3.1. Impact of different configurations
Fig. 12 shows the results of different configurations. The same hyper-parameters: lc = 3, lp = 1, lq = 1, number of residual 

unit = 12.

• Effect of batch normalization (BN): We attempt to adopt BN into each residual unit, finding that the RMSE slightly im-
proves in single-step ahead prediction, as shown in Fig. 12(a).

9 The smaller the better.
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Table 6
Comparisons with baselines on TaxiBJ and BikeNYC. Results of ARIMA, SARIMA, VAR and 
DeepST on BikeNYC are taken from [3]. For RNN-based models and ST-ResNet variants, we 
run each of them 10 times and show “mean ± standard deviation”.
Model RMSE

TaxiBY BikeNYC

HA 57.69 21.578
ARIMA 22.78 10.07
SARIMA 26.88 10.56
VAR 22.88 9.92
ST-ANN 19.57 7.58
DeepST 18.18 7.43
RNN-3 26.68± 3.41 9.01± 0.50
RNN-6 30.03± 1.60 8.61± 0.42
RNN-12 45.51± 2.01 12.41± 0.84
RNN-24 51.12± 1.99 12.53± 0.14
RNN-48 43.42± 1.20 12.76± 0.18
RNN-336 39.61± 0.77 10.74± 0.35
LSTM-3 26.81± 2.80 8.67± 0.33
LSTM-6 26.07± 1.87 9.56± 0.64
LSTM-12 27.59± 3.69 9.90± 0.67
LSTM-24 25.69± 2.25 11.34± 0.44
LSTM-48 27.80± 2.87 12.36± 0.87
LSTM-336 40.68± 1.08 10.54± 0.13
GRU-3 22.97± 1.11 8.76± 0.37
GRU-6 23.64± 1.14 8.57± 0.22
GRU-12 27.40± 3.72 9.68± 0.51
GRU-24 27.01± 1.58 12.27± 0.77
GRU-48 28.56± 3.71 12.71± 0.93
GRU-336 40.27± 2.30 10.76± 0.33

ST-ResNet 17.17 ± 0.21 (12 residual units) 6.32± 0.13 (4 residual units)
ST-ResNet-noExt 17.26± 0.38 (12 residual units) \
ST-ResNet-AVG1 19.07± 0.30 (12 residual units) 6.44± 0.19 (4 residual units)
ST-ResNet-AVG2 18.04± 0.15 (12 residual units) 5.99 ± 0.09 (4 residual units)

Fig. 11. Model ranking on TaxiBJ and BikeNYC using RMSE (mean). The smaller the better. For deep learning models, we use error bars to show standard 
deviation.

Fig. 12. Results of different configurations. We run each configuration 10 times where error bars show standard deviation.
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Fig. 13. Impact of network depth. We run each model 10 times where error bars show standard deviation.

Fig. 14. Impact of filter size and number. We run each model 10 times where error bars show standard deviation.

• Effect of parametric-matrix-based fusion: We use a parametric-matrix-based fusion mechanism (see Eq. (3)) to fuse tem-
poral closeness, period and trend components. Simply, one also can employ a straightforward method for fusing, i.e. 
X(L+2)
c +X(L+2)

p +X(L+2)
q . Fig. 12(b) shows that ours is better than the straightforward method, demonstrating the effec-

tiveness of our proposed parametric-matrix-based fusion.
• Internal structure of residual unit: The proposed residual unit includes 2 convolutions. We here test the performance 

different setting in the residual unit. From Fig. 12(c), we observe that the model using 2 convolutions is better than 
using 1 convolution.

• True Weather vs. Forecast: Using the same network architecture, we here employ different weather data as the training 
data: true weather and forecasting. Fig. 12(d) shows the comparison of different weather, demonstrating that it is better 
to use true weather as the training data. The possible reason is that the weather forecasting provides a coarse-grained 
predicted values, namely, 6th, 12th, 18th, 24th hours in future.

5.3.2. Impact of network depth
Fig. 13 presents the impact of network depth. As the network goes deeper (i.e. the number of residual units increases), 

the RMSE of the model first decreases and then increases, demonstrating that the deeper network often has a better result 
because it can capture not only near spatial dependence but also distant one. However, when the network is very deep (e.g. 
number of residual unit ≥ 14), training becomes more difficult and the possibility of overfitting becomes larger.

5.3.3. Impact of filter size and number
The receptive field of a convolution is determined by the size of the filter used. We here change the size of the filter 

from 2 × 2 to 5 × 5. Fig. 14(a) shows that the larger filter size has the lower RMSE, demonstrating larger receptive field has 
better ability to model spatial dependency. From Fig. 14(b), we can observe that more filters better result.

5.3.4. Impact of temporal closeness, period, trend
We here verify the impact of temporal closeness,period, trend components on TaxiBJ, as shown in Fig. 15. Fig. 15(a) shows 

the effect of temporal closeness where we fix lp = 1 and lq = 1 but change lc . For example, lc = 0 means that we does not 
employ the closeness component, resulting in a very bad result: 33.47 ± 0.34. We can observe that RMSE first decreases and 
then increases as the length of closeness increases, indicating that lc = 4 has the best performance. Fig. 15(b) depicts the 
effect of period where we set lc as 3 and lq as 1 but change lp . We can see that lp = 1 has the best RMSE. The model without 
the period component (i.e. lp = 0) is worse than the model with lp = 2, 3, but better than the lp = 4 model, meaning that 
short-range periods are always beneficial, and long-range periods may be hard to model or not helpful. Fig. 15(c) presents 
the effect of trend where lc and lp are fixed to 3 and 2, respectively. We change lq from 0 to 3. The curve points that the 
lq = 1 model outperforms others. Similar to period, it is better to employ the trend component, but long-range trend may be 
not easy to capture or useless.
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Fig. 15. Impact of temporal closeness, period, trend. We run each model 10 times where error bars show standard deviation.

Fig. 16. Visualization of parameters.

To better understand the temporal closeness, period and trend, we here visualize the parameters of the parametric-matrix-
based fusion layer, which is capable of learning different temporal influence degrees for each region of a city, as shown in 
Fig. 16. Each element in each sub-figure denotes a learned parameter of a certain region that reflects the influence degree by 
closeness, period, or trend. We here set a threshold (e.g. 0.3) to see the temporal properties of the whole city. Given a fixed 
threshold 0.3, we observe that the ratio (the number of regions whose parametric value is less than 0.3) of the closeness
is 0, demonstrating all of regions in the city have a more or less closeness. The ratio of the period shows that there are 9%
regions only have very weak periodic patterns. Likewise, Fig. 16(c) depicts that 7% regions do not have temporal trend. From 
Fig. 16(a), we find that the closeness of some main-road-related regions (red dashed frame) is not obvious. One reason is 
that the crowd flows in these regions can be predicted using period or/and trend, adding slight closeness.

5.3.5. Impact of activation function of output layer
In these experiments, we investigate the impact of activation functions (sigmoid and tanh) in the output layer. Since 

the range of the sigmoid function is [0, 1], we have to scale the crowd flow data into [0, 1]. We run each model 5 times, 
and train for 50 epochs (without early stopping) using Adam [14]. Other hyperparameters are set as following: 12 (residual 
units), 32 (batch size), and 0.0002 (learning rate). Results are summarized in Fig. 17. We observe that ST-ResNet with tanh 
activation has faster convergence, yielding a better result (rmse: 16.80 ± 0.46) on the test set with fixed number of epochs.
Possible reason: the outputs of the sigmod functions are not zero-centered, and the corresponding inputs of the whole 
networks are also not zero-centered, which is undesirable since all layers10 in the network would be receiving data that is 
not zero-centered. It has implications on the dynamics during gradient descent, because if the data coming into a neuron is 
always positive then the gradient on weights during back-propagation become either all positive, or all negative. Undesirable 
zig-zagging dynamics could happen in the gradient updates for the weights.

5.4. Evaluation of multi-step ahead prediction

According to Algorithm 2, we can use historical observations and the recent predicted ones to forecast the crowd flows 
in subsequent time intervals which is referred to multi-step ahead prediction. Fig. 18 shows multi-step prediction results 
of 12 different models on TaxiBJ. Among these models, ST-ResNet-BN and ST-ResNet-noExt are variants of ST-ResNet (12 
residual units), where ST-ResNet-BN employs BN. LSTM-3, LSTM-6 and LSTM-12 are three variants of LSTM (see details in 

10 The outputs of middle layers with ReLU activation are non-zero-centered outputs.
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Fig. 17. Training curves on TaxiBJ of ST-ResNet. Dashed lines denote mean test error (y-axis on the right), solid lines denote mean training error (y-axis on 
the left), and shaded areas denote standard deviation. The Tanh makes ST-ResNet easier to train.

Fig. 18. Multi-step ahead prediction. For LSTM variants and ST-ResNet variants, we run each of them 10 times and use markers and shaded areas to denote 
mean RMSE and standard deviation, respectively.

Section 5.1). From the results of 4-step ahead prediction,11 we find our ST-ResNet performs best though ST-ResNet-BN is 
better in the single-step ahead prediction, showing in Fig. 12(a). We observe that LSTM-12 is better than ST-ResNet when 
the number of the look-ahead steps is greater than 8. The reason may be that LSTM-12 uses the past 12 observations to 
predict, however, our ST-ResNet only takes past recent 3 observations as the input of the closeness component.

5.5. Efficiency and resources

We test the efficiency on two different virtual machines in the cloud (i.e. Microsoft Azure), as shown in Table 7. As 
introducing in Section 4.1, there are four main steps to predict crowd flows for each region of a city: (1) pulling trajectories 
from Redis; (2) converting trajectories into crowd flow data; (3) predicting the crowd flows in near future; (4) pushing 
results into Redis. We also report the time consumed by above four steps. Totally, A2 standard VM finishes the whole 
predicting process in 18.56 seconds. It takes 10.93 seconds on D4 standard VM, which is more powerful but expensive. One 
can choose different Cloud resources according to the requirements and budgets.

11 4-step ahead prediction on TaxiBJ means predicting the crowd flows in next 2 hours.
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Table 7
Configuration of virtual machines and performance.

Virtual Machine (Azure) A2 standard D4 standard

OS Ubuntu 14.04 Ubuntu 14.04
Memory 3.5 GB 28 GB
CPU 2 cores @ 2.20 GHz 8 cores @ 2.20 GHz
Keras version 1.1.1 1.1.1
Theano version 0.9.0dev 0.9.0dev

Time (s)
Pulling trajectories from redis 2.71 1.64
Converting trajectories into flows 9.65 6.05
Predicting the crowd flows 5.79 2.97
Pushing results into redis 0.41 0.27

Total 18.56 10.93

6. Related work

6.1. Crowd flow prediction

There are some previously published works on predicting an individual’s movement based on their location history [21,
22]. They mainly forecast millions, even billions, of individuals’ mobility traces rather than the aggregated crowd flows in a 
region. Such a task may require huge computational resources, and it is not always necessary for the application scenario of 
public safety. Some other researchers aim to predict travel speed and traffic volume on the road [23–25]. Most of them are 
predicting single or multiple road segments, rather than citywide ones [25,26]. Recently, researchers have started to focus 
on city-scale traffic flow prediction [20,27]. Both work are different from ours where the proposed methods naturally focus 
on the individual region not the city, and they do not partition the city using a grid-based method which needs a more 
complex method to find irregular regions first.

6.2. Classical models for time series prediction

Predicting the flows of crowds can be viewed as a type of time series prediction problem. There are several conventional 
linear models for such problem. The historical average model is portable, which simply uses the average value of historical 
time series to predict future value of time series. However, the model unable to respond to dynamic changes, such as 
incidents [28]. The Auto-Regressive Integrated Moving Average (ARIMA) model assumes that the future value of time series 
is a linear combination of previous values and residuals, furthermore, in order to obtain stationarity, the nonstationary time 
series should be differenced before analysis [29]. ARIMA is not suite for time series with missing data, since they relying 
on uninterrupted time series, and data filling technique might be problematic as the complexity of the situation increase 
[30]. The additional seasonal difference is often applied to seasonal time series to obtain stationarity before ARIMA being 
used, which is called SARIMA. The disadvantage of SARIMA is time consuming [30]. The Vector Autoregressive (VAR) models 
capture the linear inter dependencies among interrelated time series [31]. However, the correlation between predicted 
values and residuals is neglected.

Being different from the above linear models, the artificial neural network (ANN) model is a nonlinear model and com-
monly used in time series prediction [32–34]. ANNs have excellent nonlinear modeling ability, but not enough for linear 
modeling ability [35].

6.3. Deep neural networks

Neural networks and deep learning [4,36,37] have gained numerous success in the fields such as compute vision [10,
38], speech recognition [39,40], and natural language processing [41]. For example, convolutional neural networks won 
the ImageNet [42] competition since 2012, and help AlphaGo [43] beat Go human champion.12 Recurrent neural networks 
(RNNs) have been used successfully for sequence learning tasks [44]. The incorporation of long short-term memory (LSTM) 
[16] or gated recurrent unit (GRU) [17] enables RNNs to learn long-term temporal dependency. However, both kinds of 
neural networks can only capture spatial or temporal dependencies. Recently, researchers combined above networks and 
proposed a convolutional LSTM network [45] that learns spatial and temporal dependencies simultaneously. Such a network 
cannot model very long-range temporal dependencies (e.g. period and trend), and training becomes more difficult as depth 
increases.

In our previous work [3], a general prediction model based on DNNs was proposed for spatio-temporal data. In this 
paper, to model a specific spatio-temporal prediction (i.e. citywide crowd flows) effectively, we mainly propose employing 

12 https://en .wikipedia .org /wiki /AlphaGo _versus _Lee _Sedol.

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
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the residual learning and a parametric-matrix-based fusion mechanism. A survey on data fusion methodologies can be found 
at [46].

6.4. Urban computing

Urban computing [2], has emerged as a new research area, which aims to tackle urban challenges (e.g. traffic congestion, 
energy consumption, and pollution) by using the data that has been generated in cities (e.g. geographical data, traffic flow, 
and human mobility). A branch of research also partitions a city into grids, and then studies the traffic flow in each region of 
the city, such as predicting urban air quality [47,48], detecting anomalous traffic patterns [49], inferring missing air quality 
[50], forecasting of spatio-temporal data [3]. Besides, some researchers started to research on deep learning methods for 
urban computing applications. For example, Song et al. proposed a recurrent-neural-network-based model to predict the 
person’s future movement [51]. Chen et al. proposes a deep learning model to understand how human mobility will affect 
traffic accident risk [52]. Both work are very different from ours in terms of approach and problem setting. To the best of 
our knowledge, in the field of urban computing, end-to-end deep learning for forecasting citywide crowd flows has never 
been done.

7. Conclusion and future work

We propose a novel deep-learning-based model (called ST-ResNet) for forecasting the flow of crowds in each and every 
region of a city, based on historical spatio-temporal data, weather and events. Our proposed ST-ResNet is capable of learn-
ing all spatial (nearby and distant) and temporal (closeness, period, and trend) dependencies as well as external factors (e.g. 
weather, event). We evaluate our model on two types of crowd flows in Beijing and NYC, achieving performances which are 
significantly beyond 9 baseline methods, confirming that our model is better and more applicable to the crowd flow pre-
diction. The code and datasets have been released at: https://www.microsoft .com /en -us /research /publication /deep -spatio -
temporal -residual -networks -for-citywide -crowd -flows -prediction. We develop a Cloud-based system, called UrbanFlow, that 
can monitor the real-time crowd flows and provide the forecasting crowd flows in near future using our ST-ResNet.

In the future, we will consider other types of flows (e.g. metro card swiping data, taxi/truck/bus trajectory data, and 
phone signals data), and use all of them to generate more types of flow predictions, and collectively predict all of these 
flows with an appropriate fusion mechanism.
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