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Abstract—With the development of positioning technology, a large number of trajectories have been generated, which are very useful
for many urban applications. However, it is challenging to manage trajectory data for its spatio-temporal dynamics and high-volume
properties. Existing trajectory data management frameworks suffer from efficiency or scalability problem, and support only limited
trajectory query types. This paper takes the first attempt to build a holistic distributed NoSQL trajectory query engine, named TrajMesa,
based on GeoMesa, an open-source indexing toolkit for spatio-temporal data. TrajMesa can manage a prohibitively large number of
trajectories, and support plenty of query types efficiently. Specifically, we first design a novel trajectory storage schema, which reduces
the storage size tremendously. We then devise a novel indexing key schema for time ranges, based on which ID (i.e. moving object
identifier) temporal query can be supported efficiently. To reduce the amount of retrieved trajectory data for a spatial range query, we
propose a position code to indicate the spatial location of trajectories accurately. We also propose a bunch of pruning strategies for
similarity query and k-NN query in the NoSQL environment. Extensive experiments are conducted using two real datasets and one
synthetic dataset, verifying the powerful query efficiency and scalability of TrajMesa. The results show that TrajMesa is about
100 ∼ 1000 times faster than the state-of-the-art trajectory management frameworks in our experimental settings. TrajMesa is currently
deployed in JD company, processing over 1T trajectories of JD Logistics every day.

Index Terms—Trajectory Data Management, Distributed NoSQL Storage, Spatio-Temporal Indexing and Query Processing.
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1 INTRODUCTION

W ITH the proliferation of positioning technology, a
large number of trajectories have been generated.

For example, DiDi, the largest rider-sharing company in
China, produces over 15 billion location points of 70TB
data size per day. As shown in Fig. 1, to utilize such huge
trajectories, various trajectory queries have been proposed:
1) ID Temporal Query, which retrieves the trajectories of
a given moving object within a specified time range, is
used frequently in package tracking services. For example,
users would use this type of query to check the status
of their packages, i.e., where they are or when they will
arrive. 2) Spatial Range Query, which finds the trajectories
travelling through a given spatial range, can be used to
discover reachable areas [1] (A reachable area is an area
that can be reached from a given region within a specified
time budget). In this case, we retrieve the trajectories that
have passed the query region using spatial range query.
The road segments covered by these trajectories form a
reachable area. 3) Similarity Query, which returns all tra-
jectories similar to a given trajectory, would help people to
detect travelling companions [2] and ride sharing [3]. For
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Fig. 1. Motivation for Various Trajectory Queries.

example, taxi companies can use this type of query to find
users with similar trajectories, and recommend ride sharing
services to them. And 4) k-NN (Nearest Neighbour) Query,
which finds k trajectories that are most similar to a given
trajectory, can be a building block for trajectory clustering.
For example, in the bike lane planning project [4], we first
cluster trajectories based on k-NN query, then identify the
road segments with many trajectories traversed.

It is desirable for a scalable and unified trajectory query
engine to support all of these queries efficiently. Centralized
solutions, e.g., TrajStore [5] and Torch [6], are based on
a single machine, thus could not cope with such huge
trajectories obviously. The distributed frameworks based on
MapReduce, e.g., [7–9], are designed for massive trajecto-
ries, but they still face the efficiency problem, as they may
incur multiple disk I/Os even for a single job. Most recently,
many distributed in-memory trajectory data management
frameworks, e.g, [10–15], have emerged. However, they
suffer from three limitations. First, these frameworks load
all trajectories into memory. They require high-performance
clusters with much memory, hence their scalability is lim-
ited. Second, for each query request, they need to scan
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the big indexes in memory, which hurts query efficiency.
Third, all of these frameworks only support limited tra-
jectory query types, therefore cannot support sophisticated
urban applications. Distributed NoSQL (Not Only SQL)
data stores, such as Bigtable [16] and HBase, are suitable for
real-time read/write random access to big data. However,
due to lack of secondary indexes, these NoSQL data stores
do not natively support spatio-temporal data management.
GeoMesa [17] is an open-source tool that manages large-
scale spatio-temporal data on the top of distributed NoSQL
data stores. It transforms multi-dimensional information
into one-dimensional key. However, GeoMesa cannot be
applied to manage trajectories directly.

This paper is extended from our previous work [18]. To
the best of our knowledge, we are the first to build a holistic
distributed NoSQL trajectory query engine, TrajMesa [19],
based on GeoMesa. TrajMesa has three notable characteris-
tics: 1) Scalability. TrajMesa is based on distributed NoSQL
data stores, thus it requires little for clusters. It can manage
massive trajectories with limited cluster resources. 2) Effi-
ciency. We carefully design a novel storage schema and a set
of indexing techniques, thus it supports various trajectory
queries efficiently. It is even 100 ∼ 1000 times faster than the
advanced in-memory trajectory data management frame-
works in our experimental settings. 3) Plenty of queries
support. TrajMesa supports various widely used trajectory
queries, including but not limited to: ID temporal query,
spatial range query, similarity query and k-NN query1. The
contributions of this paper are summarized as follows:

(1) We take the first attempt to build a holistic distributed
NoSQL trajectory query engine based on GeoMesa, in which
a novel trajectory storage schema is designed. It not only
reduces the storage size tremendously, but also supports
various very useful trajectory queries efficiently.

(2) We devise a novel indexing key schema for time
ranges, based on which ID temporal query can be supported
efficiently. To reduce the amount of retrieved trajectory data
for spatial range query, we innovatively propose a position
code to indicate the spatial location of trajectories accurately.
We propose multiple pruning strategies for similarity query
and k-NN query in the NoSQL environment.

(3) Extensive experiments are conducted based on two
real datasets and one synthetic dataset, which verifies the
powerful query efficiency and scalability of TrajMesa.

(4) An online demo system is deployed and publicly
available in [19]. At present, TrajMesa is deployed in JD2,
processing over 1T trajectories of JD Logistics every day.
Outline. We give the preliminaries in Section 2. The frame-
work of TrajMesa is presented in Section 3. In Section 4 and
Section 5, we detail indexing & storing and query processing
techniques of TrajMesa, respectively. We present the evalu-
ation results in Section 6, followed by the related works in
Section 7. Finally, we conclude this paper in Section 8.

2 PRELIMINARY

This section gives related definitions, and introduces some
knowledge of GeoMesa to help understand our designs.

1. TrajMesa also supports other useful trajectory queries, which can
be found in Appendix B.

2. https://en.wikipedia.org/wiki/JD.com

2.1 Definition

Definition 1. (GPS Point) A GPS point p = (lat, lng, t)
contains a latitude lat, a longitude lng, and a timestamp t.

Definition 2. (Trajectory) A trajectory tr = {p1 → p2 →
...→ pn} is a GPS point sequence ordered by timestamps.

tr.oid is the identifier of the moving object generating tr. |tr|
is the number of GPS points in tr. The minimum bounding
rectangle (MBR) tr.mbr is the smallest axis-aligned rectangle
that contains all locations of GPS points in tr; tr.ps and tr.pe
are the first and the last GPS point, respectively. Similarly,
tr.ts and tr.te are the start and end time, respectively.

Definition 3. (ID Temporal Query) Given a trajectory
dataset T , a moving object identifier oid, a temporal range
R = [ts, te], ID temporal query returns all trajectories
tri ∈ T , where tri.oid = oid, and there exists at least one
GPS point pj in tri that is generated during R. Formally,

IDT query(T , oid, R) = {tri ∈ T | tri.oid = oid∧
∃pj ∈ tri, ts ≤ pj .t ≤ te}

(1)

The constraint “∃pj ∈ tri, ts ≤ pj .t ≤ te” can be rewritten
as “tri.ts ≤ te ∧ tri.te ≥ ts”. It means if there is at least one
GPS point in a trajectory tr generated during [ts, te], then tr
should be returned.

Definition 4. (Spatial Range Query) Given a trajectory
dataset T , a spatial range S = {latmin, lngmin, latmax,
lngmax}, spatial range query returns all trajectories tri ∈ T ,
where there exists at least one GPS point pj in tri that is
located in S. Formally,

SR query(T , S) = {tri ∈ T | ∃pj ∈ tri,

latmin ≤ pj .lat ≤ latmax ∧ lngmin ≤ pj .lng ≤ lngmax}
(2)

Definition 5. (Similarity Query) Given a trajectory dataset
T , a query trajectory q, a distance function f , a threshold
ε, similarity query finds all trajectories tri ∈ T , where the
distance between q and tri is not greater than ε. Formally,

Sim query(T , q, f, ε) = {tri ∈ T | f(q, tri) ≤ ε} (3)

The distance function f measures the similarity of two
trajectories. This paper focuses on one of the most widely
used trajectory distance functions, i.e., Fréchet distance [20]
fF , which measures the minimum distance of all GPS point
pairs between two trajectories meanwhile considers the GPS
point order in a trajectory. Other Euclidean space distance
functions, such as Hausdorff distance [21] and DTW [22],
are also supported by TrajMesa (See Appendix A).

Suppose there are two trajectories Q = 〈q1, q2, ..., qn〉
and tr = 〈p1, p2, ..., pm〉, Fréchet distance is defined as:

fF (Q, tr) =


max
1≤i≤n

d(qi, p1) m = 1

max
1≤j≤m

d(q1, pj) n = 1

max{d(qn, pm),min{fF (Qn−1, tr),
fF (Q, trm−1), fF (Qn−1, trm−1)}} others

(4)
where d(qi, pj) is the Euclidean distance between two
GPS points qi and pj , and Qn−1 = 〈q1, q2, ..., qn−1〉 and
trm−1 = 〈p1, p2, ..., pm−1〉 are the sub-trajectories of Q and
tr, respectively.

Definition 6. (k-NN Query) Given a trajectory dataset T , a
query position or a query trajectory q, a positive integer k, a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

distance function f , k-NN query returns a set of trajectories
T ′ ⊆ T , where |T ′| = k, and for each tri ∈ T ′, trj ∈ T \T ′,
f(q, tri) < f(q, trj). Formally,

kNN query(T , q, f, k) = {tri ∈ T ′ | T ′ ⊆ T ∧
|T ′| = k ∧ ∀trj ∈ T \ T ′, f(q, tri) < f(q, trj)}

(5)

If q is a trajectory, f can be Fréchet distance (or other
Euclidean space-based distance), and it is called k-NN tra-
jectory query [11, 23]. If q is a point, f can be defined as
Equation (6), and it is entitled k-NN point query [10, 23].

fP (q, tr) = min
pj∈tr

d(q, pj) (6)

where d(q, pj) is the Euclidean distance between q and pj .

2.2 GeoMesa

GeoMesa [17] is an open-source tool, which manages large-
scale spatio-temporal data on the top of distributed NoSQL
data stores. Its main idea is to transform multi-dimensional
data into one-dimensional linear keys using space filling
curves [24]. Essentially, GeoMesa stores multiple copies of
data into different tables. With a carefully designed key,
each table can support several types of queries efficiently.
GeoMesa provides various indexing strategies with a com-
mon key combination:

shard+ feature(Optional) + id

where “+” represents a concatenation operation, the same
with the remaining equations when we refer to key combi-
nation; shard is a random number to distribute data across
region servers for load balance; feature contains the spatial
or spatio-temporal information that are extracted from a
record; and id is the identifier of a record assigned by users
or generated randomly as UUID (Universally Unique Iden-
tifier). Among these three parts, shard and id are consistent
in all strategies, but feature is not the same. We introduce
some indexing strategies related to this paper here.
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Fig. 2. Z2 and XZ2.

Z2 and XZ2 Indexing Strategies.
Z2 and XZ2 are used to support
spatial-related queries efficiently. Z2
is for point data, and its feature
is Z(lng, lat), where Z(∗, ∗) is the
Z-ordering [25] function to project
two-dimensional geographical coor-
dinates onto one-dimensional data.
As shown in Fig. 2, this function
partitions the spatial space into 4
sub-spaces of equal size, which are
numbered from 0 to 3. Each sub-space is further partitioned
recursively, until a certain resolution is achieved. The ob-
tained number sequence represents the position of a point.
For example, in Fig. 2, point p is transformed into “003”.

XZ2 is for non-point data (e.g. polygons or lines) based
on XZ-ordering [26], an extension of Z-ordering. Its feature
is XZ2(lngmin, latmin, lngmax, latmax). It first extracts the
MBR of non-point data, whose left bottom corner deter-
mines a sub-space r, and the width and height decide a
proper resolution. A proper resolution is that, the enlarged
sub-space of r (i.e., we fix the left bottom corner of r, and
double its width and height) just covers the data. As shown
in Fig. 2, line l is projected as “03”, as the enlarged sub-space

of “03” (marked as orange) covers line l, but the enlarged
sub-space of “032” cannot cover l.
Attribute Indexing Strategy. To speed up the queries by a
given attribute value (e.g., query trajectories according to
moving object identifiers), GeoMesa provides an attribute
indexing strategy. Here, feature consists of two parts:

attrV al + 2ndT ier

where attrV al is the value of an attribute, followed by a
zero byte to mark its end. 2ndT ier is a secondary index,
which can be one of other index keys, e.g., Z2 or XZ2.
For more details about the indexing strategies of GeoMesa,
please refer to [17, 19, 26, 27].

3 FRAMEWORK

Figure 3 gives the framework of our proposed platform, Tra-
jMesa, which consists of three main modules: Preprocessing,
Indexing & Storing, and Query Processing.
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Fig. 3. Framework of TrajMesa.

Preprocessing. This module takes raw GPS points as input,
and performs three main tasks: 1) noise filtering, which
removes outlier GPS points that may be caused by the
poor signal of positioning systems; 2) stay point detection,
which identifies the locations where a moving object has
stayed for a while within a certain distance threshold; and
3) segmentation, which breaks a long trajectory into several
meaningful short trajectories, such as multipe trips of taxies.
Trajectory preprocessing is not only necessary for many
urban applications, e.g., [4, 28], but also very important for
the selection of the underlying storage schema and index
building (see Section 4). As this paper mainly focuses on the
indexing and query processing, please refer to our previous
work [29] for more details about trajectory preprocesing.
Indexing & Storing. This module builds indexes for the
preprocessed trajectories, and stores the trajectory data into
the underlying data store of GeoMesa. Specifically, we gen-
erate two different keys that combine the spatio-temporal
attributes and other necessary information of a trajectory.
Each key and trajectory data forms a key-value pair, which is
then stored into the data store of GeoMesa. In other words,
we store two copies of a trajectory into two tables with
different keys (detailed in Section 4).
Query Processing. With the help of built indexes, TrajMesa
efficiently supports most useful trajectory queries, includ-
ing: ID temporal query, spatial range query, similarity query,
and k-NN query (detailed in Section 5).
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Fig. 4. Storage Schema Selection.

4 INDEXING AND STORING

TrajMesa indexes and stores cleaned and segmented tra-
jectories. In this section, we first discuss the selection of
underlying storage schema, which is vital for index building
and query processing. After that, we introduce the index
techniques for various trajectory queries. Note that we es-
sentially store two copies of trajectory data with different
carefully designed keys in different tables, as the disk stor-
age cost is much cheaper than the computing cost [30].

4.1 Storage Schema Selection

Vertical Storage Schema. One basic idea to store trajectories
in a key-value store is that, the trajectory data is stored with
each GPS point as one row, as most existing non-relational
trajectory management systems did [29–32]. We call this
schema as vertical storage schema (V-Store). An example
of V-Store is given in Fig. 4(a), where the value of each point
can be categorized into two parts:

(1) Spatio-temporal properties, which consists of the lati-
tude lat, longitude lng, and time t of this GPS point. They
are used to build the spatio-temporal indexes.

(2) Other properties, which includes the moving object
identifier oid that generates this point, the trajectory id tid
that this point belongs to, and other property readings.

V-Store regards each GPS point in a trajectory as an
independent entity, which leads to several drawbacks. 1) To
fetch a trajectory, we need to first retrieve all of its GPS
points, then group them by tid, and sort each group by
t. This procedure is time-consuming and slows down the
query efficiency. 2) V-Store is unfit for trajectory queries,
especially for similarity query and k-NN query, as we can
hardly know the full information of a trajectory before
we acquire all of its GPS points. 3) The number of rows
is equal to the number of GPS points, which results in
prohibitively numerous key-value entries. More key-value
entries need more disk storage space, which triggers more
disk I/Os when retrieving the same number of trajectories.
This further hurts the query efficiency.
Horizontal Storage Schema. To address the aforementioned
issues, we propose a novel horizontal storage schema, i.e.,
H-Store, to store each trajectory in a single row. As shown
in Fig. 4(b), the value of each entry contains four parts:

(1) Spatio-temporal properties, which includes the MBR
mbr, the start and end time ts and te, and the start and
end positions ps and pe of a trajectory.

(2) GPS point list. The GPS points in a trajectory are
first serialized using Kryo3 (a fast serializer that trans-
forms data into bytes, which is necessary for the following
compression), and then compressed with GZip4 (a popular

3. https://github.com/EsotericSoftware/kryo
4. https://www.gzip.org/

compressor that achieves a good balance of compression
ratio and efficiency). This not only reduces the storage size
tremendously, but also improves the efficiency of storing
and querying by reducing disk I/Os5.

(3) Signature. In most scenarios, a trajectory only locates
in a very small part of its MBR. That is to say, the MBR
of a trajectory cannot represent its position exactly. To this
end, we design a signature, which provides finer-grained
information of the trajectory location. As shown in Fig. 4(c),
the MBR of a trajectory is divided into α×α disjoint regions
(i.e., signature regions) with equal size, and each region is
numbered. The signature is a binary sequence of α× α bits.
If one or more GPS points of the trajectory are located in a
region, the corresponding bit is set to 1, otherwise set to 0. A
bigger α means a finer representation, but it requires more
storage space and more query complexity. Figure 4(c) gives
an example of signature with α = 4.

(4) Other properties. Like V-Store, we store the moving
object id oid, trajectory id tid, and other related properties.
Discussion. Most NoSQL data stores limit the maximum
storage size for each row by default. As the GPS point
list of a segmented trajectory would not be too long (this
is one of the reasons that we need the trajectory prepro-
cessing procedure before indexing & storing), it should
be fit in a row in most cases. Otherwise, TrajMesa would
throw an exception. One can also change or remove the
size limitation. For example, the limitation of HBase is
set 10M by default, and this limitation is configurable by
hbase.client.keyvalue.maxsize.

In the following, we will elaborate the design of keys for
each indexing table using H-Store in TrajMesa.

4.2 ID Temporal Indexing
Main Idea. To efficiently support ID temporal query, Tra-
jMesa stores a copy of trajectory data with the key designed
based on attribute indexing strategy. The main idea is to
keep the trajectory data of the same moving object at adja-
cent time together as much as possible.
Challenges. Recall that the key of attribute indexing strat-
egy is shard+attrV al+2ndT ier+id, where attrV al can be
set as the moving object id oid, and id is set as the trajectory
id tid. To support a temporal paradigm, one may simply
replace 2ndT ier by the start time ts (or end time te) of a
trajectory. However, there could be some results missing if
we only encode ts (or te). As shown in Fig. 5(a), suppose
the time range of a query q is [tqs, tqe], when ts < tqs, a
qualified trajectory will be overlooked. Note that we retrieve
trajectories if only part of their GPS points located in the
given temporal range. One of the challenges is how to index
time ranges using one-dimensional keys.

5. More details about the selection of compression and serialization
methods can be found in Appendix C.
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Fig. 5. Techniques of ID Temporal Indexing.

Solution. Although interval tree [33] allows to efficiently
find all intervals that overlap with a given interval, however,
it requires to maintain a tree structure, which is not fit for
the NoSQL environment. XZ2 indexing strategy [26] projects
spatial ranges onto one-dimensional keys to support spatial
range queries. Inspired by XZ2, we propose XZT (eXtended
Z-ordering for Time range) to support time range queries
by projecting time ranges onto one-dimensional keys. The
main idea of XZT is to find an ordered and unique key for
each trajectory time span. Before drilling in the details, we
first give some related definitions.

Definition 7. (Element) A time range E = [ts, te] is called
an element, whose length is defined as ∆t = te − ts.

Definition 8. (XElement) The extended element (XElement)
of E = [ts, te] is XE = [ts, te + ∆t], where ∆t = te − ts.
Note that the length of XE is twice of the length of E.

As there is no limit for the time dimension, we divide the
time line into disjoint time period bins (e.g., one day or one
year). For each bin, we encode the time ranges whose start
time locates in this bin. Specifically, as shown in Fig. 5(b),
the key of element E = [ts, te] consists of two parts:

(1) Bin Num. It indicates which time period bin that ts
locates in, defined by Equation (7).

Bin(ts) = b(ts −RefT ime)÷BinLenc (7)
where ts is the start time of E, RefT ime is the reference
time (e.g., 1970-01-01T00:00:00Z), and BinLen is the num-
ber of seconds in a time period bin. We use two bytes to
store the Bin Num, as it can represent at least 216/365 ≈ 180
years when BinLen is 1 day, which satisfies most cases.

(2) Element Code. It represents the offset of E in its time
period bin, denoted by C(E). There are two steps to get the
element code: Sequence Calculation and Code Generation.
• Sequence Calculation. This step gets a binary sequence

S = 〈s0, s1, ..., sl−1〉 in a way similar to binary search. As
shown in Fig. 5(c), we recursively find a line segment L =
[tls, tle] in binBin(ts) = [tbs, tbe] to representE = [ts, te]. If
ts locates in the left half part of the search space, we append
0 to S; otherwise, we append 1. This procedure is terminated
when at least one of the following conditions is not met.{

tls ≤ ts ∧ tle + ∆t ≥ te (I)
|S| < g (II)

(8)

Condition (I) guarantees that the XElement of L, i.e.,
[tls, tle + ∆t], just fully contains the time range E (i.e., if
we further equally split L into two line segments L1 and
L2, neither of the XElements of L1 and L2 can fully contain
E). Condition (II) means that the length of S is not greater
than a user specified constant g, which avoids an overlong
sequence. Algorithm 1 gives the pseudo-code, which is self-
explanatory. Note that we may append an extra bit to S,

Algorithm 1: Sequence Calculation
Input: Element E = [ts, te] to be indexed, time period

bin Bin(ts) = [tbs, tbe], max sequence length g.
Output: Sequence S = 〈s0, s1, ..., sl−1〉.

1 S = 〈〉; tls = tbs; tle = tbe; tc = (tls + tle)/2;
2 while (tls ≤ ts ∧ tle + ∆t ≥ te) ∧ |S| < g do
3 if ts < tc then
4 S.append(0); tle = tc;

5 else
6 S.append(1); tls = tc;

7 tc = (tls + tle)/2;

// The last may do not meet condition (I)
8 if tls > ts ∨ tle + ∆t < te then
9 S.removeLast();

10 return S;

as the last line segment may do not meet condition (I). We
should remove it as shown in Line 8-9.

Example. As shown in Fig. 5(c), supposeBin(ts) = [0, t],
the XElement of line segment [t/4, t/2] (i.e., [t/4, 3t/4]) con-
tains [ts, te], but the XElement of [t/4, 3t/8] (i.e., [t/4, t/2])
does not. Hence, the sequence of [ts, te] is “01”.
• Code Generation. This step generates a long integer code

from the binary sequence, according to Equation (9). It can
be regarded as a process of converting binary to decimal.

C(S) =

l−1∑
i=0

si × (2g−i − 1) + 1 (9)

Discussion. XZT requires that, the time range E to be
indexed should be within the XElement of a line segment
in a time period bin. To this end, XZT could not index a
time range whose length is greater than the bin. If so, we
cannot find a sub-time range in a bin whose XElement fully
contains E, and TrajMesa would throw an exception. Fortu-
nately, as most segmented trajectories would be no longer
than one day (this is another reason that we preprocess
trajectories), we can easily select an appropriate time period.
Summary. In summary, the key of ID Temporal Indexing
Table is shown as Fig. 6.

shard + oid + BinNum(2 bytes) + ElementCode(8 bytes) + tid

XZT

Fig. 6. Key of ID Indexing Table.

4.3 Spatial Range Indexing

Main Idea. We build Spatial Range Indexing Table for
spatial range query, similarity query and k-NN query based
on XZ2 indexing strategy, which encodes the spatial infor-
mation into a linear key. The main idea is to store spatially
close trajectories together as much as possible.
Challenges. Recall that the key in XZ2 indexing strategy is
shard + XZ2 + id, where id can be set as the trajectory
id tid. However, XZ2 cannot represent the spatial location
of trajectories exactly. As shown in Fig. 7(a), XZ2 indexing
strategy uses 03 to represent the trajectory tr, because the
XElement of 03 (marked orange, the concepts are borrowed
from Definition 7 and 8 but with two dimensions in this
case) just covers tr. However, the XElement of 03 is too big
for tr, as tr only crosses a small portion of it. To this end, it
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(b) Composition of XZ2+

PosCode(tr) = (0011)bin

(c) Example of PosCode

Fig. 7. Techniques of XZ2+.

is necessary to design a more accurate encoding method to
indicate the spatial location of trajectories.
Solution. This paper proposes XZ2+ to hash out the afore-
mentioned issue. As shown in Fig. 7(b), the keys generated
by XZ2+ consist of two parts:

(1) XZ2. This part is generated based on XZ-
ordering [26]. It is a long integer which is converted from
the non-point data. In Fig. 7(a), the XZ2 is 03 (note that this
is a quaternary number).

(2) PosCode (position code). We divide the XElement into
β×β disjoint areas of equal size, and each area is numbered.
Then the spatial location of a trajectory tr is indicated by
β × β bits. If at least one GPS point of tr locates in an area,
the corresponding bit is set 1, otherwise set 0. Figure 7(c)
gives the PosCode of tr in Fig. 7(a) with β = 2.
Discussion. Note PosCode is not the same as the trajectory
signature. Trajectory signature is based on the MBR of a
trajectory, but PosCode is based on the XElement. Here,
a bigger β means a more accurate spatial location repre-
sentation, but it results in more storage space and may
damage the query efficiency (see Section 5 for details). In
our implementation, we set β = 2.
Summary. In summary, the key of Spatial Range Indexing
Table is shown as Fig. 8.

shard + XZ2(8 bytes) + PosCode(4 bits) + tid

XZ2+

Fig. 8. Key of Spatial Range Indexing Table.

5 QUERY PROCESSING

With the carefully designed indexes, TrajMesa efficiently
supports various useful queries. Most of these queries
follow a common three steps: 1) query window generation,
which generates multiple query windows by given query
paradigms; 2) query execution, which executes trajectory
queries in parallel; 3) result refinement, which removes un-
satisfied or duplicated trajectories and returns final results.

5.1 ID Temporal Query

Query Window Generation. Recall that the key of ID
Temporal Indexing Table is shard + oid + BinNum +
ElementCode + tid. Given an ID temporal query q with
a time range [tqs, tqe] and a moving object id oid, this step
is further divided into five substeps:

(1) shard generation, which enumerates all possible val-
ues of shard.

(2) oid generation, which combines the query moving
object id with a zero byte that marks the end of object id. It
is obviously unique when an ID temporal query is given.

tls tletle–BinLen / 2g

Element with Biggest Code max

Element with Smallest Code min

√

√

√

q tqe

0 t 2t

0 t 2t1/2t

0 t 2t

×

tqs

√ √ √
1/2t 3/2t

3/2t
(b) ElementCode Range Generation(a) ElementCode Range of Sub-Elements

Fig. 10. Code Range of Sub-Elements.

0 3t

ts te

t 2t

Bin1 Bin2 Bin3

qtqs tqe

tr

Fig. 9. Bin Selection.

(3) BinNum generation,
which finds a list of time
period bins whose XElement are
overlapped with [tqs, tqe]. We
calculate the bins where tqs and
tqe locate according to Equation (7). Suppose bm = Bin(tqs)
and bn = Bin(tqe), then the bins bi, m − 1 ≤ i ≤ n, are
selected. Note that bin bm−1 is also qualified, because there
could be trajectories whose time spans are overlapped
with [tqs, tqe], e.g., the trajectory tr shown in Fig. 9. The
trajectories in other bins would not be qualified.

(4) ElementCode generation. Essentially, we find an
element [tls, tle] to represent the time range [ts, te] of a tra-
jectory during the process of indexing. In this step, for each
qualified element [tls, tle] in a time bin, we calculate the el-
ement code range [min,max] of all its sub-elements, where
min = C([tls, tle]) and max = C([tle−BinLen/2g, tle]), as
shown in Fig. 10(a). Here, g is the max sequence length, and
BinLen/2g is the time span of an element with a sequence
length of g. This step is to find all elements in a time bin that
overlap with the query time range [tqs, tqe].

Algorithm 2 presents the pseudo-code of ElementCode
generation, which consists of three main parts:
• Initialization (Line 1). R records the qualified element

code ranges, and l records the sequence length of the ele-
ments to be checked (it also represents check level). We use
a first-in-first-out queue que to help the check process in a
breath-first order. Flag represents the end of a level.
• Recursive Check (Line 2-12). For each element cur in que,

we check the relation of its XElement Xcur with [tqs, tqe].
There are three cases: 1) If Xcur is contained in [tqs, tqe],
we get a code range that represents all sub-elements of cur,
and add it to R (Line 7-8); 2) If Xcur is overlapped with
[tqs, tqe], we add the code that exactly stands for cur to R.
Besides, we add the two children of cur to que for further
test (Line 9-12); 3) If Xcur does not intersect with [tqs, tqe],
we do nothing. When the maximum resolution is reached or
que is empty, the recursive check process is terminated.
• Remaining Check (Line 13-17). We process the remaining

elements in que if it is not empty (Line 13-17).
Function CodeRange (Algorithm 3) returns the code

range of [tls, tle]. part indicates whether it returns a code
range of all sub-elements or that of the exact [tls, tle].

Example. Figure 10(b) gives an example of code range
generation, where Bin(tqs) = [0, t] and g = 2. The qualified
elements (whose XElement is contained in or overlapped
with the query time range) are checked.

(5) Query window combination. We combine shard, oid,
BinNum, and code ranges into query windows, whose
number is Nshard ×

∑Nbin−1
i=0 Nrange

i . Nshard and N bin are
the number of shard values and qualified bins, respectively,
and Nrange

i is the number of code ranges in bin bi.
Query Execution. TrajMesa triggers SCAN operations over
the underlying data store in parallel, where each query
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Algorithm 2: ElementCode Generation in a Bin
Input: Query time range [tqs, tqe], Bin(tqs) = [tbs, tbe].
Output: A list of ElementCode ranges R.

1 R = ∅; l = 0; que.push([tbs, tbe]); que.push(Flag);
2 while l < g ∧ que 6= ∅ do
3 cur = que.pop();
4 if cur = Flag then
5 l = l + 1; que.push(Flag); continue;

6 [tls, tle] = cur; ∆t = tle − tls;
// XElement of cur is contained

7 if tls ≥ tqs ∧ tle + ∆t ≤ tqe then
8 R.add(CodeRange(tls, tle, false));

// XElement of cur is overlapped
9 else if tls ≤ tqe ∧ tle + ∆t ≥ tqs then

10 R.add(CodeRange(tls, tle, true));
11 tlc = (tls + tle)/2;
12 que.push([tls, tlc]); que.push([tlc, tle]);

// Processing remaining elements in que
13 while que 6= ∅ do
14 cur = que.pop();
15 if cur 6= Flag then
16 [tls, tle] = cur;
17 R.add(CodeRange(tls, tle, false));

18 return R;

Algorithm 3: Function CodeRange(tls, tle, part)
1 min = C([tls, tle]);
2 if part = true then
3 max = min;

4 else
5 max = C([tle −BinLen/2g, tle]);

6 return [min,max];

window is transformed into an execution.
Result Refinement. Due to the limitation of max sequence
length, there could be unqualified trajectories retrieved.
Consequently, when all SCAN operations are finished, we
collect the results and remove the unsatisfied trajectories.

5.2 Spatial Range Query

Query Window Generation. Spatial range query is based on
Spatial Range Indexing table, whose keys follow a pattern
of shard + XZ2 + PosCode + tid. The query window
generation step is further divided into four substeps:

(1) shard generation, the same with ID temporal query.
(2) Spatial key range generation. This step generates a list

of key ranges by the given spatial range query q, which is
similar to Algorithm 2 but extended to two dimensions [26].
As shown in Fig. 11(a), we recursively check the XElement
Xe of an element e in a top-down fashion. IfXe is contained
in q, we generate a key range that includes all elements in
e. If Xe overlapped with q, we generate a key range that
exactly represents e, and further check the four children
of e until the max resolution is reached. If Xe does not
intersect with q, we do nothing. All qualified elements
(whose XElement is contained in or overlapped with q) in
Fig 11(a) are marked green.

(3) PosCode generation. As shown in Fig. 11(a), tr2
is not overlapped with q, thus it should not be retrieved.

tr2

21

1

tr1

(a) Spatial Range Query
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31

32

33

①

③②

⓪

tr2

q
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3

20 22

23

ε

q
εε

(b) Similarity Query

ε

S

(c) Distance Lower Bound

tr1

SP_LB

EP_LB

SIG_LB

2ε

2ε
R1

R2

Fig. 11. Spatial Range and Similarity Queries.

PosCode is proposed to address this issue. As mentioned
in Section 4.3, we divide an XElement into β × β disjoint
areas, which can be represented by a sequence of β × β bits
B. For each XElement of a qualified element e, if q intersects
with the i-th area, then B[i] = 1, otherwise B[i] = 0. A
PosCode of element e must satisfy Equation (10):

PosCode(e)&B 6= 0 (10)
where & means bitwise AND operation. For each qualified
e, we generate all of its satisfied PosCodes, whose number
is between 2β×β−1 (if q intersects with only one area) and
2β×β−1 (if q intersects with all areas). To this end, β should
not be set too large (β = 2 in our implementation).

Example. As shown in Fig. 11(a), q intersects with
the second area of the XElement of 03, thus B = 0010.
We enumerate all numbers from 0000 to 1111, find-
ing the following 8 PosCodes that satisfy Equation (10):
0010, 0011, 0110, 0111, 1010, 1011, 1110, and 1111.

(4) Query window combination. It combines shard, key
ranges, and PosCodes into query windows, whose number
is Nshard ×

∑Ne−1
i=0 NPosCode

i , where Nshard and Ne are
the number of shard values and qualified elements, respec-
tively, and NPosCode

i is the number of PosCodes of ei.
Query Execution. Similar to ID temporal query, but we use
the Spatial Range Indexing table in this case.
Result Refinement. Similar to ID temporal query, but we
refine trajectories by the given spatial range.

5.3 Similarity Query
Similarity query follows a filtering-refinement framework.
In filtering step, we get a candidate trajectory set based on
spatial range queries. In refinement step, we check the real
similarity, and get the final result.
Trajectory Filtering. Similarity query regards spatial range
query as a building block. As shown in Fig. 11(b), given a
query trajectory q with a distance threshold ε (we would
transform ε from km to coordinate degree), we get two
spatial ranges R1 = {lat1 − ε, lng1 − ε, lat1 + ε, lng1 + ε}
and R2 = {latn − ε, lngn − ε, latn + ε, lngn + ε}, where
(lat1, lng1) and (latn, lngn) are the start and end points of
q, respectively. All similar trajectories should be contained
in the spatial range query result T ′ = SR query(T , R1) ∩
SR query(T , R2) in terms of Fréchet distance fF .

Lemma 1. All similar trajectories of q are in T ′ in terms of
Fréchet distance fF .

Proof. We first prove that all similar trajectories of q are con-
tained in T1 = SR query(T , R1). Suppose ∃tr, fF (tr, q) ≤
ε, but tr /∈ T1. As tr /∈ T1, all points of tr are out of
R1. Consequently, fF (tr, q) ≥ min

pi∈tr
d(pi, q.ps) > ε, which

conflicts with our hypothesis.
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Similarly, we can prove that all similar trajectories of q
are contained in T2 = SR query(T , R2). To this end, all
similar trajectories of q are contained in T ′ = T1 ∩ T2.

Result Refinement. After retrieving a candidate trajectory
set T ′ using spatial range query, it requires to refine it by
checking whether f(tr, q) ≤ ε for all tr ∈ T ′. However, the
complexity of fF is O(|tr| × |q|), which is time-consuming.
Therefore, this paper proposes three types of pruning strate-
gies, all of which can be calculated in O(1).

(1) MBR Pruning. Given a query trajectory q with a
threshold ε, where q.mbr = {latmin, lngmin, latmax,
lngmax}, we get a spatial range S = {latmin − ε, lngmin −
ε, latmax+ε, lngmax+ε}. The MBRs of all similar trajectories
should be fully contained in S according to Lemma 2.

Lemma 2. If the MBR of tr is not fully contained in S, i.e., there
is at least one GPS point p of tr falling outside S, then tr would
not be similar to q in terms of Fréchet distance fF .

Proof. Suppose ∃tr, fF (tr, q) ≤ ε, but ∃p ∈ tr, p is out of S.
As p is out of S, fF (tr, q) ≥ min

qi∈q
d(p, qi) > ε, i.e., tr is not

similar to q, which conflicts with our hypothesis.

(2) SEP LB. We propose a lower bound based on the start
and end points of two trajectories.

SEP LBfF (q, tr) = max{d(q.ps, tr.ps), d(q.pe, tr.pe)} (11)

Lemma 3. If SEP LBfF (q, tr) > ε, then fF (q, tr) > ε.

Proof. fF (q, tr) ≥ max{d(q.ps, tr.ps), d(q.pe, tr.pe)} =
SEP LBfF (q, tr) > ε.

(3) SIG LB. As introduced in Section 4.1, trajectory sig-
natures indicate the finer information of trajectory locations,
based on which a signature lower bound is proposed.

SIG LBfF (q, tr) = max{ max
rq∈Sig(q)

min
rtr∈Sig(tr)

d(rq, rtr),

max
rtr∈Sig(tr)

min
rq∈Sig(q)

d(rtr, rq)}
(12)

where rq ∈ Sig(q) is a signature region of trajectory q,
d(rq, rtr) is the region distance between rq and rtr, which is
calculated by Equation (13).

d(rq, rtr) = min
pi∈rq,pj∈rtr

d(pi, pj) (13)

We also define the distance between a point p and a region
r as the minimum distance between p and any point p′ ∈ r.

d(p, r) = min
p′∈r

d(p, p′) (14)

Lemma 4. If SIG LBfF (q, tr) > ε, then fF (q, tr) > ε.

Proof. For points qi ∈ q and pj ∈ tr, they must locate in
signature regions riq and rjtr, respectively. So we have:

fF (q, tr) ≥ max{max
qi∈q

min
pj∈tr

d(qi, pj), max
pj∈tr

min
qi∈q

d(pj , qi)} ≥

max{max
qi∈q

min
rtr∈Sig(tr)

d(qi, rtr), max
pj∈tr

min
rq∈Sig(q)

d(pj , rq)} ≥

max{ max
rq∈Sig(q)

min
rtr∈Sig(tr)

d(rq, rtr), max
rtr∈Sig(tr)

min
rq∈Sig(q)

d(rtr, rq)}

= SIG LBfF (q, tr) > ε.

The calculation time complexity of SIG LB is O(α2), but
α� |q| and α� |tr|. We set α = 4 in our implementation.

Algorithm 4: k-NN point query
Input: Query point q, result count k, max resolution g.
Output: A set of trajectories Tknn.

1 Initial a priority queue cdq with a max size k, whose
elements tr are ordered by fP (q, tr) of Equ (6);

2 Initial a priority queue req with whole spatial region,
whose elements r are ordered by d(q, r) of Equ (14);

3 dmax = 0; checked = ∅;
4 while req is not empty do
5 r = req.pop();
6 if cdq.size() = k ∧ d(q, r) > dmax then
7 break; // Pruning I: Region Pruning

8 if the resolution of r < g then
9 Add the four children of r to req; continue;

10 TSR = SR query(T , r);
11 foreach tr ∈ TSR do
12 if tr.tid in checked then
13 continue;

14 checked = checked ∪ {tr.id};
15 if cdq.size() = k ∧ LBfP (q, tr) > dmax then
16 continue; // Pruning II: LB Pruning

17 Add tr to cdq; dmax = fP (q, cdq.last());

18 return cdq as Tknn;

If one of above lower bounds is greater than ε, we
can safely stop the calculation of trajectory distance, which
accelerates similarity queries tremendously.

5.4 k-NN Query

k-NN query is categorized into k-NN point query [10] and
k-NN trajectory query [11]. We first elaborate k-NN point
query in TrajMesa, then extend it to k-NN trajectory query.
k-NN point query. The main idea of k-NN point query is
to iteratively expand the query spatial range in an inner-
outer fashion, until the k most similar trajectories are found.
We propose two pruning strategies to stop the expansion
process as early as possible. Algorithm 4 presents k-NN
point query, which contains two steps:

(1) Initialization (Line 1-3). Here, cdq is a priority queue
that stores candidate trajectories; req is another priority
queue to record the regions to be queried; dmax is the
currently maximum distance between q and the trajectories
in cdq; and checked records the trajectory IDs that we have
already checked, which avoids redundant computation.

(2) Expansion (Line 4-17). This step pops a region r
from req. If there are k trajectories in cdq and the distance
between q and r is greater than dmax, the query process is
terminated (Lemma 5, denoted as Region Pruning). If the
resolution of r is smaller than g, we add its children to req
and continue to check next region. Otherwise, we trigger a
spatial range query by r. For each trajectory tr ∈ TSR, before
calculating its real distance to q (which is time-consuming),
we first check if it has been checked in an “inner” iteration.
If the answer is “yes”, we simply omit it. Otherwise, we
add it to checked, and use a lower bound pruning strategy
(Lemma 6 and 7, denoted as LB Pruning). If tr is satisfied
with all lower bounds, we add it to cdq, and update dmax.

Lemma 5. If d(q, r) > dmax, then fP (q, tr) > dmax, where tr
is any trajectory queried by r but not retrieved before.
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(a) 3-NN query (b) Critical Steps of 3-NN query processing

(1) Before query,req=<02,2,03,00,01,1,3>,cdq=<>,dmax=0;

(2) Query 02, req=<20,03,21,00,01,22,23,1,3>,cdq=<tr1>,dmax=d1;

(3) Query 20, req=<03,21,00,01,22,23,1,3>,cdq=<tr1,tr2>,dmax=d2;

(4) Query 03, req=<21,00,01,22,23,1,3>,cdq=<tr1,tr3,tr2>,dmax=d2;

(5) Query 21, req=<00,01,22,23,1,3>,cdq={tr1,tr3,tr2},dmax=d2;

(6) Query 00, req=<01,22,23,1,3>,cdq={tr1,tr4,tr3},dmax=d3;

(7) Because d(01, q)>dmax and |cdq|=3, cdq is the result. Stop.

Fig. 12. Example of k-NN Query (k = 3 and g = 2).

Proof. If tr has already been retrieved as it crosses an
“inner” region, it should have been checked. If tr has
not been retrieved, we have: fP (q, tr) = min

pj∈tr
d(q, pj) ≥

min
pj∈tr.mbr

d(q, pj) ≥ min
pj∈r

d(q, pj) = d(q, r) > dmax.

Lemma 6. If MBR LBfP (q, tr) = d(q, tr.mbr) > dmax,
then fP (q, tr) > dmax.

Proof. fP (q, tr) = min
pj∈tr

d(q, pj) ≥ min
pj∈tr.mbr

d(q, pj) =

d(q, tr.mbr) > dmax.

Lemma 7. If SIG LBfP (q, tr) = min
rtr∈Sig(tr)

d(q, rtr) >

dmax, then fP (q, tr) > dmax.

Proof. fP (q, tr) = min
pj∈tr

d(q, pj) ≥ min
pj∈tr.mbr

d(q, pj) ≥
min

rtr∈Sig(tr)
d(q, rtr) = SIG LBfP (q, tr) > dmax.

Example. Figure 12(a) gives an example of k-NN point
query, where the critical steps are shown in Fig. 12(b).
k-NN trajectory query. The procedure of k-NN trajectory
query is similar to that of k-NN point query, but with the
following three differences.

(1) The elements of cdq and req are ordered by fF (q, tr)
and Equation (15), respectively.

Region LBfF (q, r) = max
qi∈q

d(qi, r) (15)

(2) We use Equation (15) to perform Region Pruning,
whose correctness can be guaranteed by Lemma 8.

Lemma 8. If Region LBfF (q, r) > dmax, then fF (q, tr) >
dmax, where tr is a trajectory queried by r but not retrieved
before.

Proof. If tr has already been retrieved, it should have
been checked. If tr has not been retrieved, we have:
fF (q, tr) ≥ max{max

qi∈q
min
pj∈tr

d(qi, pj), max
pj∈tr

min
qi∈q

d(pj , qi)} ≥
max{max

qi∈q
min

pj∈tr.mbr
d(qi, tr.mbr), max

pj∈tr.mbr
min
qi∈q

d(tr.mbr, qi)}
≥ max{max

qi∈q
min
pj∈r

d(qi, pj),max
pj∈r

min
qi∈q

d(pj , qi)} ≥
max
qi∈q

min
pj∈r

d(qi, pj) = max
qi∈q

d(qi, r) = Region LB(q, r) >

dmax.

(3) We use the lower bounds proposed in Section 5.3 to
perform LB Pruning for k-NN trajectory query.

6 EXPERIMENTS

6.1 Datasets & Settings

Datasets. We use three datasets to evaluate the performance
of TrajMesa: 1) T-Drive [34], which includes taxi trajectories
of Beijing, China from 2008-02-02 to 2008-02-08; 2) Lorry,
which contains JD logistic lorry trajectories of Guangzhou,
China from 2014-03-01 to 2014-03-31; and 3) Synthetic,

which is generated by copying Lorry dataset up to 1T to
test the scalability of TrajMesa. Their statistics are shown in
Table 1. Note that the max time span of trajectories in the
two real datasets are 35.5h and 43.5h, respectively, both of
which are greater than 1 day. To this end, we cannot use 1
day as the time period bin in ID Temporal Indexing table.

TABLE 1
Statistics of Datasets

Attributes #Points #Objects Size Rate #Traj. Max Span
T-Drive 17,662,984 10,366 752MB 177s 314,086 35.5h
Lorry 886,593,200 48,813 136GB 20s 7,280,994 43.5h

Synthetic 8,865,932,000 488,130 1360GB 20s 72,809,940 43.5h

TABLE 2
Parameter Settings

Parameters Settings
Data Size (%) 20, 40, 60, 80, 100
Time Range 1h, 6h, 1d, 1w, 1m, 2m, 3m

Spatial Range (km2) 1× 1, 2× 2, 3 × 3, 4× 4, 5× 5
k 50, 100, 150, 200, 250

ε (km) 1, 2, 3, 4, 5
Time Period 1 week, 1 month, 1 year

Settings. Table 2 summarizes the parameters, where the
default values are in bold. The max sequence length g is
set as 16 (about 1km× 1km), as this is a common resolution
of spatial range query in many urban applications. Table 3
gives the softwares and their versions. We use Spark to
preprocess trajectories, and HBase as the underlying NoSQL
data store of GeoMesa. To eliminate the effect of HBase
cache6, we randomly select 100 different query parameters,
perform each query only once, and take the median of all
queries as the final results. All experiments are conducted
on a cluster of 5 nodes, with each node equipped with
Centos 7.4, 8-core CPU, 32GB RAM, and 1T disk.

TABLE 3
Softwares in the Experiments

Software Version Software Version Software Version
Hadoop 2.7.6 GeoMesa 2.3.0 JDK 1.8

Spark 2.3.3 HBase 1.4.9 Scala 2.11

TABLE 4
Supported Queries of Comparing Methods

Queries STH Dita DFT TMV TMnlb TMnps

IDT × × ×
√∗ √ √

SR
√ √

×
√∗ √ √

SimfF ×
√

× ×
√ √

k-NNfF ×
√ √

×
√ √

k-NNfP × × × ×
√ √

Baselines. We compare TrajMesa (i.e., TM) with six base-
lines, as shown in Table 4, where their supported queries are
marked. Among these baselines, STH [7] (i.e., ST-Hadoop)
is an advanced disk-based trajectory management system,
and Dita [12] and DFT [11] are state-of-the-art in-memory
trajectory management platforms (we obtain the source code
from their authors, and run these systems in our experi-
mental environment. Other systems, e.g., [10, 35], are not
compared as we cannot get their source codes). TMV , TMnlb,
and TMnps are the variants of TM.
• TMV adopts V-Store as the underlying storage schema.

Note that we retrieve trajectories if PART of their GPS points
locate in a given spatial/temporal range. As a result, TMV

does not directly support the queries proposed in this paper.
To achieve ID temporal query and spatial range query, we

6. HBase caches results in memory to expedite same queries.
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Fig. 13. Performance of Storage.
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Fig. 14. Performance of ID Temporal Query.

first get the trajectory IDs in a given temporal/spatial range,
then retrieve all GPS points for each qualified trajectory ID.
In this storage schema, we also store two copies of data with
carefully designed spatio-temporal keys.
• TMnlb does not apply lower bound pruning techniques

to spatial range query and k-NN query.
• TMnps does not adopt PosCode in Spatial Range

Indexing table.
In this paper, we only present fF -based results for

similarity query and k-NN query, because both Dita and
DFT support it, as well as the limitation of pages. The
experimental results of parameter tuning (e.g., α, β) can
be seen in Appendix C. More results can be found in our
technical reports [19].

6.2 Performance of Storage
Figures 13(a) and 13(b) compare the storage sizes of different
storage schemas when varying the trajectory data size. Note
that the storage size includes both ID temporal indexing
table and spatial range indexing table. There are two ob-
servations: 1) the storage size gets linear growth with an
increasing of trajectory data size for both H-Store and V-
Store, because it needs more storage space when the data
gets larger; 2) V-Store takes up about 5 times of storage
space than H-Store for both datasets, because H-Store stores
the GPS points in a trajectory together, and can compress
the GPS point data more easily. It is also interesting to see
that the storage size of H-Store is even much smaller than
the raw data size, although we store two copies of data. This
owes to the compression mechanism of H-Store.

Figures 13(c) and 13(d) show the storing time of V-
Store and H-Store with different data sizes. It shows that
with more data, the storing time of both storage schemas
increases, as we need to process more data. V-Store takes
much more time than H-Store. There are two main reasons.
Firstly, V-Store stores much more key-value entries than H-
Store. More key-value entries means more operations over
the underlying NoSQL data store. Secondly, the storage data
size of H-Store is much smaller than V-Store. For the same
dataset, smaller storage size triggers less disk I/Os.

6.3 Performance of ID Temporal Query

Different Data Sizes. We compare the ID temporal query
time of TM and TMV with different data sizes (TMnlb and
TMnps are not tested, because they use the same ID indexing
table with TM). As shown in Fig. 14(a) and Fig. 14(b), TM
is much faster than TMV . Because for the same data size,
the storage space of TM is much smaller than that of TMV ,
which leads to less disk I/Os. We can also observe that the
ID temporal query time of TM is not affected by the data
size, because TM directly locates the trajectories of a given
moving object, no matter how big the dataset is. The query
time of Lorry is a little more than that of T-Drive, because
the sampling rate of Lorry is higher, and it returns more GPS
points in a given time window.
Different Time Windows. Figures 14(c) and 14(d) present
the ID temporal query time with different time windows.
It is observed that, 1) for all time periods, the query time
increases when a longer time window is given, as more tra-
jectory data is returned. As T-Drive data only contains one
week of data, if given one month of time window, the query
time does not increase. 2) The query time over Lorry is more
than that over T-Drive, because the sampling rate of Lorry
is higher than that of T-Drive. When given the same time
window, Lorry returns more GPS points. 3) The selection of
time period has little to do with ID temporal query in our
experimental settings. Because we set moving object IDs as
the prefix of keys, which prunes most unnecessary trajectory
data. Another reason could be the powerful parallel ability
of underlying data store in TrajMesa. Although a shorter
time period may result in more query windows, TrajMesa
triggers SCAN operations over the underlying data store in
parallel. To this end, we suggest choose a longer time period
bin in XZT , as XZT with a shorter time period bin cannot
index longer trajectories.

6.4 Performance of Spatial Range Query

Different Data Sizes. Figures 15(a) and 15(b) exhibit the
spatial range query time varying with different data sizes
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Fig. 15. Performance of Spatial Range Query.
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Fig. 16. Performance of Similarity Query.

(TMnlb is not presented, as it is the same with TM). From the
figures, we can observe that: 1) for both datasets, if we in-
crease the data size, it requires more time for all methods, as
more data incurs more disk I/Os; 2) TM is faster than TMnps

for the same data size, as TM scans less data thanks to the
proposed PosCode; 3) TMV is slower than TM, because
the storage space of TMV is much larger than that of TM ,
which triggers more disk I/Os; 4) Dita builds huge indexes
in memory. When the Lorry data size is greater than 60%,
Dita fails for an out-of-memory exception; 5) TM is faster
than Dita by two orders of magnitude sometimes, because
TM locates related data directly, but Dita scans big indexes;
6) STH is slower than TM, because it triggers multiple disk
read/writes even for a single request. Although STH seems
faster than Dita for spatial range queries, it takes unbearable
time to build the indexes. For example, STH takes up to 61
minutes to build the spatial indexes even for T-Drive data
in our experiments. To this end, we do not compare STH for
the big Lorry data.
Different Spatial Windows. Figures 15(c) and 15(d) show
that with a bigger spatial window, all methods need more
time, as more data is read. TM is superior to TMnps, because
PosCode avoids retrieving invalid trajectories. TM is much
faster than TMV , due to the smaller storage space offered by
H-Store. TM is faster than Dita and STH for all given spatial
ranges, because TM locates directly the candidate data (with
no index in memory), but Dita needs to scan huge indexes
in memory (its space complexity is O(N2

G + NK+2
L + |T |),

which is proportional to the number of trajectories), and
STH incurs multiple disk I/Os even for a single request.

6.5 Performance of Similarity Query

Different Data Sizes. As depicted in Fig. 16(a) and
Fig. 16(b), for all methods, the similarity query time in-
creases with a bigger data size, because with more data,
it would return more trajectories. TM is faster than TMnps,
as similarity query calls spatial range query, where position
code improves efficiency. TMnlb is slower than TM, as with-
out lower bound pruning, it needs to calculate the similarity

of all candidate trajectories, which is time-consuming. Dita
is much slower than TM, because Dita builds big indexes in
memory. For each query, Dita would scan the huge indexes,
which is costly. On the contrary, TM directly generates the
query windows, and triggers SCAN operations over the
underlying data store in parallel. The scalability of Dita is
limited. When the Lorry data size is more than 60%, Dita
throws an out-of-memory exception. However, TM works
well even for full Lorry data size, which proves the powerful
scalability of TM.
Different ε. Figures 16(c) and 16(d) show that with a bigger
threshold ε, the similarity query time increases slightly for
all methods, because with a bigger ε, more trajectories will
be returned. TM and its variants are faster than Dita, even
by three orders of magnitude, which further proves the
powerful efficiency of TrajMesa. Note here that we only use
60% of Lorry data in Fig. 16(c), as Dita does not support
larger data in our experimental environment.

6.6 Performance of k-NN Query

Different Data Sizes. Figures 17(a) and 17(b) show that,
with an increasing of data size, the query time of all methods
increases, because it extracts more data from the disk in
every expansion. TM takes less time than TMnps, which
benefits from the position code. TMnlb is slower than TM,
because it needs calculate the similarity of all candidates,
which is time-consuming. Both Dita and DFT take more
time than TM, as they need to scan huge indexes in memory
for each request. Dita and DFT could not cope with the
situation when the data size of Lorry is more than 40% and
60% respectively, as they need to build memory-consuming
indexes, but TM can easily handle it, which proves the
powerful scalability of TM.
Different k. Figures 17(c) and 17(d) present the k-NN query
time with different k values. Note that we only use 40%
of Lorry data, as Dita cannot handle more data for the
bottleneck of memory. It shows that for both datasets, with
a bigger k, all methods need more time, as they would
check more trajectory data. Given a value of k, TM takes less
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Fig. 17. Performance of k-NN Query.
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Fig. 18. Scalability of TrajMesa.

time than TMnps and TMnlb, verifying the effectiveness of
position code and pruning rules. TM outperforms Dita and
DFT, even by two orders of magnitude for a larger dataset of
Lorry. It is because TM directly generates a bunch of query
windows, and performs these query windows in parallel.
But Dita and DFT need to scan the huge indexes.

6.7 Scalability of TrajMesa

To further verify the scalability of TrajMesa, we conduct a
set of experiments using the synthetic dataset, whose size is
over 1T. As shown in Fig. 18(a), when the data size gets
bigger from 20% to 100%, both storing time and storage
size grow linearly, because more trajectories need to be
processed. Storing about 1T data only needs about 1.5 hours
and 313GB disk space, which is due to the novel underlying
storage schema and compression mechanism.

Figure 18(b) shows that the time of all queries increases
with a bigger data size, as more trajectories are qualified,
and it triggers more disk I/Os and more transmission
bandwidth. It is interesting to see that the query time of
similarity query is less than that of spatial range query,
although we perform two spatial range queries underlying
each similarity query. The reason could be that similarity
query prunes most trajectories, and there is much less data
returned. The transmission bandwidth acts as a bottleneck.

7 RELATED WORKS

In this section, we summarize the related works from three
aspects: spatial and spatio-temporal indexes, NoSQL for
spatio-temporal data, and trajectory data management.
Spatial and Spatio-Temporal Indexes. Traditional relational
database management systems, e.g., Oracle Spatial or Post-
GIS, adopt R-tree [36], k-d tree [37], quad tree [38], or
their variants [39] to index spatial data. To index spatio-
temporal data, [40] proposes a unified spatio-temporal in-
dexing schema, i.e, 3D R-tree, which regards the temporal
information as a third dimension. However, 3D R-tree is

not suitable for trajectories with a long period [23]. HR-
tree [41] and H+R-tree [42] break the temporal dimension
into disjoint time intervals, and build an individual spatial
index for each time period. CSE-tree [43], conversely, first
partitions spatial data into grids, and for each grid, it builds
a B+tree. These systems are mainly centralized implemen-
tations. They suffer from scalability problem, and could not
manage massive trajectories effectively.

NoSQL for Spatio-Temporal Data. Key-value data stores,
like Bigtable [16] and its open-source counterparts, e.g.,
Cassandra [44] and HBase, have proven to scale to millions
of updates, and provide high-scalability, high-availability
and fault-tolerant data management. These key-value data
stores, however, do not natively support multi-attribute
access, which results in full scan of the entire data for spatio-
temporal queries. There emerge many works [17, 45–50]
to support multi-dimensional data access over key-value
data stores. For example, MD-HBase [45] encodes spatial
data using Z-Ordering method, and builds two index struc-
tures, i.e., k-d tree and quad tree, among these codes over
HBase. BBoxDB [46] proposes a two-level index structure
over NoSQL data stores, where the global index uses a
k-d tree to indicate which node stores the data, and the
local index employs an R-tree in each node to find the
partition of each data item. GeoMesa [17] provides a toolkit
to transform multi-dimensional data into key ranges, thus
enables NoSQL data stores to manage spatio-temporal data.
However, these frameworks are not designed for trajectory
data, thus cannot be applied to manage trajectories directly.

Trajectory Data Management. To manage massive trajecto-
ries, many trajectory management systems have emerged,
which can be divided into three main categories: 1) Sin-
gle Machine-based Systems [5, 6]. For example, TrajStore [5]
maintains an adaptive grid-based index on the data, and
dynamically co-locates and compresses spatially and tem-
porally adjacent data on disk, thus it can retrieve all data
in a particular spatio-temporal region efficiently. Torch [6]
proposes a unified index, i.e., LEVI with compression, and
an efficient query processing technique to support various
trajectory queries. However, single machine-based trajectory
management systems suffer from scalability problem, and
cannot manage big trajectories effectively. 2) Distributed In-
Memory Systems [10–14]. For example, Dita [12] identifies
representative points as pivots in trajectories, and designs
a trie-like index structure based on the pivots to prune
dissimilar trajectories efficiently. UlTraMan [10] integrates
chronicle map with Spark to relieve the significant pressure
on JVM GC, and implement an abstraction TrajDataset for
random data access. DFT [11] partitions trajectories based
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on their segments instead of MBRs, thus can reduce the
overlaps of regions and empower the ability of pruning.
Most of these in-memory frameworks are based on Spark,
and need to load all trajectories into memory to build
indexes, hence they require high-performance clusters with
much memory, and cannot scale to very large trajectory
data. Besides, for each request, they need to scan huge
indexes, which is costly. 3) Distributed Disk-based Systems [7–
9, 29, 30, 51, 52]. For example, [9] proposes PMI and OII to
deal with spatio-temporal range queries of trajectory data
based on MapReduce. [8] proposes Summit based on [7]
to process massive trajectories using Hadoop. [30] proposes
a cloud-based trajectory data management framework, but
they adopt V-Store as the underlying storage schema, and
do not optimize for similarity query and k-NN query.
THBase [35] proposes a coprocessor-based scheme for big
trajectory data management based on HBase. It exploits a
hybrid local secondary index structure to accelerate spatio-
temporal queries. However, THBase is not optimized in the
underlying trajectory storage, which hinders its efficiency.

8 CONCLUSION

This paper proposes TrajMesa, which manages big trajec-
tory data efficiently with plenty of queries support. We
carefully design a novel storage schema that reduces the
storage size tremendously. We devise a novel method to
index time ranges, and a position code to indicate trajectory
locations accurately. A bunch of pruning rules are proposed
to accelerate similarity query and k-NN query in NoSQL
environments. Experiments using three datasets verify the
powerful efficiency and scalability of TrajMesa, showing
that TrajMesa is 100∼1000 times faster than the state-of-the-
art trajectory data frameworks in our experimental settings.
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APPENDIX A
OTHER DISTANCE FUNCTIONS

Apart from Fréchet distance fF , TrajMesa also supports
other useful Euclidean space based trajectory distance func-
tions, such as Hausdorff distance [21] fH and DTW dis-
tance [22] fD, for Similarity Query and k-NN Query with
minor efforts. Given two trajectories Q = 〈q1, q2, ...qn〉 and
tr = 〈p1, p2, ...pm〉, fH is defined as:

fH(Q, tr) = max{max
qi∈Q

min
pj∈tr

d(qi, pj), max
pj∈tr

min
qi∈Q

d(pj , qi)} (16)

and fD is defined as:

fD(Q, tr) =


∑n

i=1 d(qi, p1) m = 1∑n
j=1 d(q1, pj) n = 1

d(qn, pm) + min{fD(Qn−1, trm−1),
fD(Qn−1, tr), fD(Q, trm−1)} others

(17)
where d(qi, pj) is the Euclidean distance between two
GPS points qi and pj , and Qn−1 = 〈q1, q2, ...qn−1〉 and
trm−1 = 〈p1, p2, ...pm−1〉 are the sub-trajectories of Q and
tr, respectively. The complexities of fH and fD are both
O(m× n).

A.1 Similarity Query

The same with fF , we first 1) transform similarity query
with fH or fD to spatial range query, then 2) perform a
refinement step. In the spatial range query step, we also
have the following Lemma, where T ′ = SR query(T , R1)∩
SR query(T , R2) as shown in Fig. 11(b).

Lemma 9. All similar trajectories are in T ′ in terms both of
Hausdorff distance fH and DTW distance fD .

Proof. The proof process is similar to that of Lemma 1.

In the refinement step, to avoid the calculation of the true
distance between two trajectories, we also identify some
pruning strategies to speed up the refinement process. If
one of the following lower bounds is greater than ε, we can
stop the refinement calculation as early as possible.

(1) MBR Pruning. Similar to fF , the MBRs of all similar
trajectories in terms of fH or fD should be fully contained
in S, as shown in Fig. 11(b). The correctness can be proved
by a similar proof of Lemma 2.

(2) SEP LB. For fD, we have a lower bound based on the
start and end points of the two trajectories.

SEP LBfD (q, tr) = d(q.ps, tr.ps) + d(q.pe, tr.pe) (18)

Lemma 10. If SEP LBfD (q, tr) > ε, then fD(q, tr) > ε.

Proof. According to the definition of fD, the start points (or
end points) of the two trajectories should map to each other.
Hence, fD(q, tr) ≥ SEP LBfD (q, tr) > ε.

(3) SIG LB. We further have the signature lower bound
in terms both of fH and fD.

SIG LBfH (q, tr) = SIG LBfD (q, tr) = SIG LBfF (q, tr)
(19)

Lemma 11. If SIG LBfH (q, tr) > ε, then fH(q, tr) > ε. If
SIG LBfD (q, tr) > ε, then fD(q, tr) > ε.

Proof. The proof process is similar to that of Lemma 4.

A.2 k-NN Query
The procedure of k-NN query with fH and fD is similar to
that with fF . We have the same region lower bound for fH ,
and a different region lower bound for fD :

Region LBfH (q, r) = max
qi∈q

d(qi, r) (20)

Region LBfD (q, r) = |q| ×min
qi∈q

d(qi, r) (21)

where d(qi, r) is the distance between a point qi and a region
r (Equation (14)); |q| is the GPS point number in q.

The region pruning is effective as well for the k-NN
query with fH and fD , as guaranteed by Lemma 12.

Lemma 12. If Region LBfH (q, r) (or Region LBfD (q, r))
> dmax, then fH(q, tr) (or fD(q, tr)) > dmax, where tr is any
trajectory queried by r but not retrieved before.

Proof. For fH , the proof process is similar to that of
Lemma 8. For fD , each GPS point in q should be matched
at least once. As the check procedure of k-NN trajectory
query is ordered by |q| × min

qi∈q
d(qi, r) (i.e., min

qi∈q
d(qi, r)),

the regions closer to any GPS point in q are checked in
priority. Suppose tr is not checked before (that is, tr is not
retrieved by any region). If tr is retrieved by the current
region r, we must have fD(q, tr) ≥ |q| × min

qi∈q
d(qi, r).

Because if fD(q, tr) < |q| × min
qi∈q

d(qi, r), there must exist

at least one GPS point qk ∈ q and pj ∈ tr, such that
d(qk, pj) < min

qi∈q
d(qi, r). Then tr should be retrieved by a re-

gion r′ before, which is contradictory to the hypothesis.

Besides, we use the corresponding lower bounds pro-
posed in Section A.1 to perform LB pruning for the k-NN
query with fH and fD .

APPENDIX B
OTHER QUERY TYPES

TrajMesa also supports other useful trajectory query types,
including: 1) Spatio-Temporal Range Query and 2) Similarity
Temporal Range Query. Compared with the queries men-
tioned in this paper, these queries consider the temporal
paradigm as well. For example, for Spatio-Temporal Range
query, TrajMesa returns the trajectories that are generated
through a given spatial range and in a given temporal range.

We build another table, i.e., Spatio-Temporal Range In-
dexing Table, to efficiently support these temporal-sensitive
queries. We propose a new indexing strategy, i.e., XZ2+T ,
where we first split the time dimension into multiple disjoint
time periods, then build an individual XZ2+ index in each
time period, as shown in Fig. 19(a). To answer a temporal-
sensitive query, we first find qualified time periods, then
perform spatial-related queries parallelly in these time pe-
riods. In summary, the key combination of Spatio-Temporal
Range Indexing Table is shown in Fig. 19(b).

time 
period1

XZ2+

time 
period2

time 
periodn

shard + BinNum(2 bytes) +
XZ2(8 bytes) + PosCode(4 bits) + tid

XZ2+

(a) XZ2+T
(b) Key of Spatio-Temporal Range 

Indexing Table

Fig. 19. Techniques of XZ2+T .
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(a) Compressed Data Size.
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(d) Uncompression Time.

Fig. 20. Compressor and Serializer Selection. CP1 stands for gzip(GeoJson(FeatureCollection<GPSPoint>)), CP2 stands for
List<gzip(GeoJson(GPSPoint))>, and CP3 stands for gzip(Kryo(List<GPSPoint>)).

APPENDIX C
PARAMETER TUNING

C.1 Compressor and Serializer Selection
We compare the performance of different combinations of
compressor and serializer. Here, we use a small trajectory
dataset sampling from Lorry data, and focus on the com-
pression ratio, compression time and uncompression time
with different numbers of GPS points. The compression
ratio is defined as:

r = Zcompressed/Zraw (22)

where Zcompressed and Zraw are the compressed and raw
trajectory data size, respectively.

As shown in Fig. 20(a) and Fig. 20(b), with an increasing
number of GPS points, all of the tested combinations
have a bigger compressed data size, but their compression
ratios do not change much. Among the three methods,
List<gzip(GeoJson(GPSPoint))> (i.e., CP2) has the
biggest compression ratio, and the compression ratio of
gzip(GeoJson(FeatureCollection<GPSPoint>))>
(i.e., CP1) is slightly smaller than that of
gzip(Kryo(List<GPSPoint>)) (i.e., CP3).

Figures 20(c) and 20(d) present the compression time and
uncompression time with different numbers of GPS points,
respectively. We can see that with more GPS points, all of the
three methods take more time to compress or uncompress
the data. However, CP3 is much more faster than CP1 and
CP2 for both compression and uncompression tasks.

TrajMesa adopts gzip(Kryo(List<GPSPoint>)) as
the default compressor and serializer, as it achieves a
good trade-off between compression ratio and compression-
uncompression speed. Other compression and serialization
methods can also be easily implemented in TrajMesa with
minor efforts.

C.2 α and β Tuning

α Tuning. To choose a proper α for the trajectory signature,
we conduct a set of experiments for similarity query and
k-NN query with different values of α. We only present the
result refinement computation cost (which is in-memory), as
the trajectory filtering step is not affected by α.

As shown in Fig. 21(a), with an increasing of α, the
result refinement processing time of similarity query first
decreases, then increases. Because with a smaller α, the
signature indicates a coarser position of a trajectory, thus
we cannot filter dissimilar trajectories effectively with the
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Fig. 21. α Tuning.

signature lower bound. However, if α gets too large, the
computation cost of signature lower bound is high, which
counteracts the time saved in similarity calculation. For T-
Drive dataset, when α = 4, the processing time is minimum.
However, for Lorry dataset, the processing time fluctuates
very little, because lorries travel across China, the trajectory
candidates of Lorry is much less than that of T-Drive.

For k-NN query, it shows a similar trend with that
of similarity query. However, we can see that comparing
similarity query, the processing time fluctuation of k-NN
query is not so significant. Because in each iteration, we
filter most candidates that are already checked in an “inner”
iteration.
β Tuning. We test the spatial range query efficiency with
different values of β. Similarity query and k-NN query are
not tested, because both of them regard spatial range query
as a building block. Note that PosCodes are encoded into
the keys of data stores, thus β mainly affects the disk IOs.
Table 5 shows the results, where β = 1 means that there is
no position code. We can see that, the querying efficiency
when β = 2 is much improved, because PosCode gives a
more accurate representation of a trajectory than XZ2 in-
dexing strategy. This helps us avoid many unnecessary data
accesses. However, when β = 4, our program fails to return
results even after a very long time, because it generates too
many spatial ranges (150,152,939 spatial ranges for Lorry
dataset, and 93,099,979 spatial ranges for T-Drive dataset).
To this end, in our implementation, we set β = 2.

TABLE 5
β Tuning of Spatial Range Query (ms)

β × β 40 = 1× 1 41 = 2× 2 42 = 4× 4
Querying Time (Lorry) 2628 578 \

Querying Time (T-Drive) 1913 919 \


