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Abstract—Nowadays, couriers are still the main solution to address the “last mile” problem in logistics. They are usually required to
record the delivery time of each parcel manually, which is essential for delivery insurances, delivery performance evaluations, and
customer available time discovery. Stay points extracted from couriers’ trajectories provide a chance to fill the delivery time
automatically to ease their burdens. However, it is challenging due to inaccurate delivery locations and various stay scenarios. To this
end, we propose the improved Delivery Time Inference (DTInf*), to infer the delivery time of waybills based on their trajectories. DTInf*
is composed of three steps: 1) Data Pre-processing, which organizes waybills and stay points by delivery trips, 2) Delivery Location
Mining, which obtains the delivery location for each address and each Geocoded waybill location by mining historical delivery caused
stay points, and 3) Delivery Event-based Matching, which infers the delivery caused stay point for waybills at the same delivery location
based on a pointer network-like model SPSelector to obtain the delivery time. Extensive experiments and case studies based on
real-world datasets from JD Logistics confirm the effectiveness of our approach. Finally, a system is deployed in JD Logistics.

Index Terms—Trajectory Data Mining, Trajectory Annotation, Urban Computing

1 INTRODUCTION

XPRESS couriers are the main solution to address the
E “last mile” problem in logistics, currently. With the ac-
tive development of e-commerce, the workloads of couriers
become heavier. When delivering a parcel, the courier is
asked to perform an important additional task besides the
pick-ups and deliveries, i.e., recording the delivery time of
each parcel. Figure 1(a) shows the interface of a courier’s
PDA, displaying detailed information and actions for a par-
cel delivery task, called waybill. The “Complete Delivery”
button is required to be clicked immediately when the parcel
is delivered. While the task of clicking this button each time
a parcel is delivered looks tedious, it records the delivery
time that is vital for many applications in JD.com, e.g.,
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(a) Courier’s PDA.
Fig. 1. Background and Opportunities.

delivery insurances, delivery performance evaluations, and
customer available time discovery.

Therefore, it would be of great value for both the couriers
and the logistics company if we can fill the delivery time
automatically. Fortunately, a courier’s PDA also records
his/her locations during the working hours as shown in
Figure 1(a), which provides a chance to infer the delivery
time. Intuitively, a courier would stay at a location for a
while when he/she is delivering a parcel, thus generating
a stay point [2]. A straightforward solution would be to
extract the delivery time based on stay points of trajectories.

However, in our preliminary data analysis, there are
many exceptions between the stay points and delivery loca-
tions. For example, Figure 1(b) shows the point distribution
of a trajectory in a region, where circles are GPS points of a
courier’s trajectory; and triangle markers are the Geocoded
waybill locations, which are parsed from the plain text ship-
ping addresses via Geocoding services'. According to the
figure, there are many more trajectory stay points than the

1. https:/ /en.wikipedia.org/wiki/Geocoding
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Fig. 2. Challenges to Infer the Delivery Time.

Geocoded waybill locations, and many Geocoded waybill
locations are not always close to the stay points. Thus, it
is not possible to infer the delivery time directly from stay
points due to the following two main challenges:

« Inaccurate delivery locations. According to the delivery
time of each waybill annotated by couriers, we can find
its delivery caused stay point in the trajectory. We plot the
distribution of the distance between the Geocoded waybill
location and such stay point in Figure 2(a). It shows that
most of the Geocoded locations have some distance shifts
to the delivery caused stay points®. Therefore, for each
waybill, we can not treat the Geocoded location as the
delivery location, and infer the delivery time based on the
closest stay point to it.

e Various stay scenarios. Even if we find the closest stay
point to the actual delivery location, we still cannot say
that the parcel is delivered at that stay point. The reason is
that a courier might stay at a location for various reasons.
As shown in Figure 2(b), a courier might stay when he
is calling the customers, waiting for the traffic lights, or
picking up parcels from customers.

In the early version [1] of this work, we tackle the
automatic delivery time filling by designing a Delivery
Time Inference (DTInf) system, which solves the above chal-
lenges by mining the delivery location for each waybill and
modeling the likelihood of delivery caused stay points to
distinguish them from other stay points that are generated
due to other reasons. In the offline phase, for each Geocoded
waybill location {,, we find historical delivery caused stay
points, which correspond to deliveries to addresses whose
Geocoded location is l,, and use the spatial centroid of
those stay points as the delivery location of /. In the online
inference phase, we first retrieve the delivery location for
each waybill based on its Geocoded location, then parti-
tion waybills with the same delivery location into several
groups, each corresponding to a delivery event. After that,
for each event, we use an MLP [3] to compute a score for
each neighboring stay point, indicating the likelihood that
the stay point is the delivery caused stay point of the event.
Finally, the stay point with the highest score is selected as
the inferred delivery caused stay point, and its time is used
as the inferred delivery time for waybills of the event.

Nevertheless, there is still room of improving DTInf
in the following two aspects. 1) When mining delivery
location, DTInf assumes that each Geocoded waybill lo-
cation corresponds to one delivery location. However, we

2. In our study region, there does not exist express lockers. If parcels
are delivered to lockers, the shifts could be even larger.

2

further find there could be multiple delivery locations for
a Geocoded waybill location, e.g., addresses in different
buildings might be parsed to the same Geocoded location
given incomplete POI database of Geocoding. Under such
assumption, addresses whose Geocoded locations are the
same but actual delivery locations are different would be
corrected to a single inferred delivery location, which is
inaccurate, and affects the delivery caused stay point mod-
eling. 2) When performing the inference, for each delivery
event, we independently classify whether each nearby stay
point is the delivery caused stay point of the event, ignoring
the existence of other nearby stay points. This fails to
capture some correlation among stay points. For example,
a courier might visit a location for multiple times in a trip,
and each visit would generate a stay point. According to the
domain knowledge, parcels are more likely to be delivered
when he visits that location for the first time.

Maintaining the design principles of DTInf, in this paper,
we present DTInf" which advances the DTInf framework
with the following two improvements. 1) In addition to
inferring the delivery location for each Geocoded waybill
location, we also infer it for each address. During the online
inference, the delivery location knowledge from addresses
would be given a higher priority to be used than that from
Geocoded locations if addresses have ever appeared, since
each address usually corresponds to one actual delivery
location. 2) Instead of independently classifying each stay
point, we propose a pointer network [4] based model SPSe-
lector, which jointly considers all candidate stay points of a
delivery event to make the prediction effectively.

To summarize, we make the following contributions:

o We present a novel automatic delivery time filling prob-
lem based on trajectories and identify its challenges.

o We propose a delivery time inference solution DTInf",
which not only overcomes the distance shifts of delivery
locations, but also considers various factors. A new de-
livery location correction strategy and a stay point joint
selection model are proposed to improve DTInf.

o Experiments as well as case studies on real-world datasets
from JD Logistics show the effectiveness of DTInf*, which
outperforms the best baseline by 52.8%.

o A system based on DTInf" is deployed in JD Logistics and
used internally.

2 OVERVIEW
2.1 Preliminaries

Definition 1 (Waybill). A waybill is a parcel delivery
task assigned to a courier, denoted as a 5-tuple w =
(addr,lq, Fp,tre, tq). addr is the shipping address, [, is the
Geocoded location of addr, F,, are features of the parcel, e.g.,
the weight and the volume, ¢,.. is the timestamp, at which a
courier receives the parcel, and ¢, is the delivery time.

We note that the shipping address in plain text is not
available for us due to privacy protection issues, so we
use the combination of the customer ID and the Geocoded
waybill location of an address to act as the identifier of the
address. The delivery time ¢4 normally needs to be manually
recorded by couriers. In this study, we aim to automatically
fill t4 so as to reduce couriers’ burden of recording it.
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Definition 2 (Delivery Location). A delivery location is a
spatial point, denoted as l; = (, y) (i.e., longitude and lati-
tude), where a courier gives the parcel to the corresponding
customer, or leaves it at an express cabinet.

Definition 3 (Trajectory). A trajectory is a sequence of
spatio-temporal points, denoted as T' =< pi,p2,...,pn >,
where each point p = (z,y,t) indicates the physical pres-
ence at a location (z,y) at time ¢. Points in a trajectory are
organized chronologically.

Definition 4 (Stay Point). A stay point is a subsequence
of the trajectory, which semantically means that a mov-
ing object stays in a geographic region for a while.
Formally, given a distance threshold D,,,, and a time
threshold T..in, < pi,Pit1,...p; > is called a stay
point sp if distance(p;,pr) < Dmaz(Vk € [i + 1,7]),
distance(p;, pj+1) > Dmas (f 7 < n), and |p;.t — p;.t| >
Toin- The time interval of a sp is [p;.t, p;.t].

The location of a sp is estimated using its spatial centroid:

Shi P2 spy = Sk=iPEY
j—i1+1 j—i+1
The time of a sp is defined as the middle point of its time
interval:

and

)

sp.x =

spt=p;.t+ w 2)

Particularly, if a stay point is caused by a delivery, we

call it a delivery caused stay point. In historical data, it can be

identified by checking whether there is a parcel delivered

during the time interval of the stay point based on the
delivery time of the waybill.

Definition 5 (Delivery Trip). A delivery trip is a process
that a courier delivers a batch of parcels to customers.

2.2 Problem Definition

We aim to infer the delivery time for parcels in each delivery
trip based on stay points in couriers’ trajectories. We assume
that a courier should report the parcels failed to be delivered
(or successfully delivered) after the trip. Therefore, we know
those waybills whose delivery time could be inferred.

We propose to identify for a waybill the stay point, at
which the parcel of the waybill is delivered, and then use
its time as the inferred time of the waybill. There are two
reasons for this strategy:

o Short delivery stay: According to delivery caused stay
points, the average delivery duration is 13 minutes, and
for 80% waybills, the delivery duration does not last for

-

7-01,
08 Building 2. XX,
&,
/ Ng

<

0.4 Building 2, XX \\~J«‘i‘§,
e YO
or -
201,
Building 2, XX

£p0¢_ ~
(b) Anonymized Addresses.

o
&
A

Probability

10 20 30 40 50
Delivery Caused Stay Point Duration (min)

(a) Delivery Stay Duration.

Fig. 3. The Motivations of Problem Formulation.
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longer than 20 minutes as shown in Figure 3(a). Such gran-
ularity is acceptable for target applications, e.g., customer
available time discovery.

o Anonymized shipping address: One or more parcels can be
delivered at the same stay point. However, Geocoding
anonymizes the detailed floor information of addresses
as shown in Figure 3(b). Therefore, there is no guidance
for deciding the orders by which the waybills are finished.
Thus, it is impossible to infer finer-grained time.

Therefore, the problem of filling the delivery time of a
waybill is transformed to be one of identifying its delivery
caused stay point. We define the problem as follows:

Given courier’s stay points SP = {sp;|j € 1,..,m} de-
tected from the trajectory of a delivery trip, and the waybills
W = {ws|i € 1,...,p} he/she completed in the trip, we aim
to match each waybill w; with its delivery caused stay point sp;.

2.3 System Framework

The system framework of DTInf" is elaborated in Figure 4,
consisting of three components:

Data Pre-processing. This component takes couriers’ tra-
jectories and waybills and performs three main tasks: 1)
Noise Filtering, which removes the outlier GPS points; 2)
Stay Point Detection, which detects all the stay points from
the trajectories; 3) Delivery Trip Identification, which separates
waybills and stay points by the identified delivery trips
(detailed in Section 3).

Delivery Location Mining. This component takes historical
waybills and stay points, and generates the location map-
ping from the shipping address to the delivery location. In
case that a new shipping address might appear in the future,
we also generate a delivery location mapping from the
Geocoded waybill location so that delivery location knowl-
edge can be generalized to unseen shipping addresses. It
includes three steps: 1) Inverted Indexing, which finds all
historical delivery caused stay points for each shipping
address or Geocoded waybill location; 2) Location Inference,
which infers the raw delivery locations based on historical
delivery caused stay points; 3) Location Refinement, which
reduces the redundant raw delivery locations by clustering
neighboring raw delivery locations (detailed in Section 4).
Delivery Event-based Matching. This component takes the
stay points and waybills in a trip, and identifies the most
likely delivery caused stay point for each waybill. Two steps
are conducted: 1) Delivery Event Construction, which uses the
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location mapping to group waybills based on the corrected
delivery location, where each group of waybills is called a
delivery event; 2) Stay Point Selection, which infers the deliv-
ery caused stay point for each delivery event, and the time
of the selected stay point is used as the inferred delivery
time for waybills in that event (detailed in Section 5).

3 DATA PRE-PROCESSING

In this component, trajectories are cleaned and stay points
are extracted. Then the stay points and waybills are sepa-
rated and organized by identified delivery trips.

3.1 Noise Filtering

The trajectories generated by a courier’s PDA usually con-
tain noise points. For example, as shown in Figure 5(a), the
error of py and p7; might be several hundred meters away
from its actual location. Such noise points would affect the
quality of stay point detection. A heuristic-based approach
proposed in [5] is used to filter noise points in trajectories.
The algorithm sequentially calculates the traveling speed for
each point in a trajectory based on its precursor and itself.
If the speed is larger than a threshold, the current examined
point is removed from the trajectory. In this example, if
v34 and vgy are larger than the speed threshold, they are
removed from the trajectory. The speed threshold is set to
54km/h since the moving speed of a courier would rarely
exceed this threshold.

3.2 Stay Point Detection

Based on the cleaned trajectories, we extract all stay points
from them. We use stay points not only to infer the delivery
time, but also to find the actual delivery locations. The stay
point detection algorithm proposed in [2] is employed. The
algorithm first checks if the distance between an anchor
point and its successors in a trajectory is larger than a given
threshold D,,q5. In the example shown in Figure 5(b), ps
is the current anchor point, and p4 to pg are its successors
within D, .. It then calculates the duration between the
anchor point and the last successor within D45 (p3 and pg).
If the duration is larger than the given temporal threshold
Tin, a stay point is detected (ps to pg), and the anchor
point moves to the next point after the current stay point
(p7). Otherwise, the anchor point moves forward by one
(pa). This process is repeated until the anchor point moves
to the end of the sequence. The algorithm has the chance
to generate stay points that are temporally consecutive,
which makes little difference for the delivery time inference.
Therefore, we also merge those consecutive stay points. We

candidate next anchors

current anchor

(a) Noise Filtering.
Fig. 5. Trajectory Pre-processing.

(b) Stay Point Detection.
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tried different parameter combinations and found that most
delivery time of waybills can be included in stay points
when we set D,,,,, = 20m and 7},,;, = 30s.

3.3 Delivery Trip Identification

According to workloads, a courier can have one, two, or
several delivery trips each day. For example, a normal
workday usually contains 2 trips, while a promotion day
(e.g., 76.18”, Double 11) might contain 3~4 trips given the
tremendous workloads. A courier will start a delivery trip
after he/she receives the newly arrived parcels. Figure 6
shows the (normalized) number of parcels received and
delivered by a courier during a day for a normal workday
and a promotion day. It is noticeable that the number of
sharp increases and the time of sharp increases of the parcel
receiving curve are dynamic due to the upstream logistics
arrangements, which further influences the start time of the
delivery trip.

We propose to identify delivery trips of a courier based
on the following two rules: 1) a trip begins when the number
of receiving parcels stops increasing, and the number of
delivering parcels begins to increase; and 2) a trip ends if
the opposite condition holds.
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Fig. 6. # of Waybills Received & Delivered w.r.t. Time of Day.

Based on the identified delivery trips, we separate way-
bills and stay points by the delivery trips that contain them.

4 DELIVERY LOCATION MINING

In this component, we mine location mapping from the
shipping address to the delivery location based on historical
delivery caused stay points, so that we can employ the
actual delivery location of each waybill to improve the accu-
racy of delivery time inference in the following component.
We also generate a mapping from the Geocoded waybill
location to the delivery location, so that delivery location
knowledge can be generalized to future unseen addresses.

Motivation. The reason the delivery location knowledge
mined from historical data can improve the delivery time
inference is that addresses or Geocoded wayhbill locations in
historical waybills often appear in the future. As shown in
Figure 7(a), the shipping addresses and Geocoded waybill
locations of waybills in the previous 4 months cover more
than 57% addresses and 80% locations in the last month,
respectively. In DTInf [1], we only infer the delivery loca-
tion for each Geocoded waybill location because it is more
general. However, we further find parcels whose shipping
addresses sharing the same Geocoded location can be de-
livered at stay points that are far away from each other.
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Figure 7(b) shows the distribution of the maximum distance
differences of delivery caused stay points of waybills whose
Geocoded location are the same. The large distance gaps
indicate that there might be several delivery locations for
a Geocoded location. Therefore, we mine both the address-
based and the Geocoded location-based mappings, so that
during the inference stage, we can not only obtain accurate
delivery locations for seen addresses, but also share the
knowledge to unseen ones whose Geocoded locations have
previously appeared.
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Fig. 7. Motivations of Delivery Location Mining.

Main Idea. The delivery location mining mainly consists of

three steps: 1) Inverted Indexing, which stores all historical

delivery caused stay points for each shipping address or

Geocoded waybill location; 2) Location Inference, which infers

the raw delivery location; and 3) Location Refinement, that

clusters the raw delivery locations which are spatially very
close to generate the final delivery locations. This is inspired
by two insights discovered in the dataset:

o Multiple delivery caused stay points: Figure 8(a) shows 3
delivery caused stay points of an address in different trips.
It is noticeable that although those stay points are quite
close, there are still minor differences. If all stay points of
a shipping address/Geocoded location are leveraged, the
delivery location inference can be more accurate.

o Many-to-one mapping: Given the fact that many waybills
with different shipping addresses are delivered at the
same delivery location, it is a many-to-one relationship
between shipping addresses and delivery locations. Fig-
ure 8(b) shows delivery caused stay points of two ship-
ping addresses. It can be noticed that their delivery caused
stay points have considerably large overlaps, which in-
dicates they potentially correspond to the same delivery
location in the real world. Besides, this is also the case for
some Geocoded waybill locations due to non-consistent
results from different Geocoding services or centralized
delivery spots of different buildings. If we just infer the
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Fig. 8. Insights of Delivery Location Mining.
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delivery location for each shipping address/Geocoded
waybill location individually, those delivery locations
have high possibility to be distinct even though they are
spatially very close, which further would degrade the ef-
fectiveness of delivery time inference as we demonstrated
in the experiments.

Implementation. The procedure of the delivery location
mining is presented in Algorithm 1, which takes historical
trips TR and a distance threshold D, and returns two loca-
tion mappings: R,, which is from the shipping address to
the delivery location, and R4, which is from the Geocoded
waybill location. We first build two inverted indexes M,
and M, to store the delivery caused stay points for each
shipping address addr and each Geocoded waybill location
l, by iterating over all historical trips. In each trip tr, we
iterate over waybills delivered during the trip, i.e., tr.W,
and find the delivery caused stay point for each waybill w
by querying the stay point whose temporal range includes
the delivery time w.t4 in trip stay points ¢r.SP, and add it to
M, and M, (Line 2-6). Note that, we only store unique stay
points for each addr and [, to avoid adding duplicated stay
points given multiple waybills with one address/Geocoded
waybill location for each trip. Then, for each index key addr
in M,, we infer the raw delivery location using the centroid
of its delivery caused stay points, and store the location
mapping to Agqqr (Line 7-8). And for each index key [,
in Mg, its delivery caused stay points might correspond
to multiple delivery locations. Therefore, we first apply a
hierarchical clustering algorithm [6] on all delivery caused
stay points to form several clusters bounded by the given
distance threshold D, and the clustering result H stores
the mapping from the stay point to its cluster centroid.
The clustering algorithm first treats each stay point as a
cluster, and then iteratively merges two clusters with the
minimum distance, which is defined as the geographical

Algorithm 1 Delivery Location Mining.

Input: The historical trips T'R; the distance threshold D.
Output: The address-based mapping R, and the Geocoded
location-based mapping R,.
1 Mg, Ma, Ag, Aa, Rg, Ra < 0;
/* Inverted Indexing*/
: for tr € TR do;
for w € tr.WW do
sp + temporal_query(tr.SP,w.tq);
M |w.addr] < Mgw.addr] U {sp};
Mglw.la] < Mglw.la] U {sp};
/* Location Inference */
: for addr € M, do
Aqladdr] + centroid_calculation(M,[addr]);
: forl, € M, do
H <+ hierarchical_clustering(Mglla], D);
Aglla] < main_centroid_selection(H);
/* Location Refinement */
12: L + {Aq[addr||Vaddr € A} U {Ag[la]|Vle € Ag};
13: H <« hierarchical_clustering(L, D);
14: for addr € Aq do
15: Raladdr] < H[Aa[addr]];
16: forl, € Ay do
17 Rylla] + H[Ag[l));
18: return R, and Rg;

AL N

=20 » N
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distance between two cluster centroids, to form a new clus-
ter, until there does not exist two clusters whose distance
is smaller than D. Next, we select the cluster centroid with
the maximum number of stay points as the raw delivery
location of the Geocoded waybill location, and store the
location mapping to A, (Line 9-11). After that, we apply the
same clustering algorithm on all discovered raw delivery
locations obtained from A, and A, (Line 12-13). Eventually,
the final delivery location for each addr and [, is the
centroid of the cluster formed by raw delivery locations. The
final location mapping is stored in R, and R4, and returned
(Line 14-18).

5 DELIVERY EVENT-BASED MATCHING

In this component, we infer the delivery time for completed
waybills based on stay points in the delivery trip. We denote
the set of waybills to be delivered at the same delivery loca-
tion in a trip as a delivery event, which can be obtained based
on the previously mined location mappings. For each trip,
we first construct several delivery events, then select the
best-matched stay point for each event using an attention-
based selection model. The time of the selected stay point is
further treated as the delivery time of waybills in the event.

The reasons to perform the delivery event-level match-
ing for waybills in a trip are two-fold:

o Correlations between delivery events and stay points: The
delivery event will affect the characteristics of the delivery
caused stay point. The box plot in Figure 9(a) shows the
duration distribution w.r.t. the number of customers of a
delivery event (D = 20m). It is obvious that a courier
would stay longer if he/she needs to deliver for more
customers. Such characteristics cannot be captured if we
perform the inference task for each waybill individually.

o Location by location delivery: A courier usually continuously
delivers all parcels at the same delivery location, e.g.,
a residential building. For a delivery location in each
historical trip, we can find a delivery caused stay point,
during the time interval of which the majority of waybills
at that location are completed. We call such stay point
as the main (delivery caused) stay point of that delivery
event. The pie chart in Figure 9(b) shows that 95.9%
waybills are completed during the time intervals of the
main stay points. Though 4.1% waybills are completed out
of them, their delivery time differences w.r.t. the main stay
points are small as the histogram shows. Therefore, if we
correctly infer the main stay point of each delivery event,
the time inference errors for waybills are acceptable.
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Fig. 9. Insights of Delivery Event Construction.

5.1 Delivery Event Construction

In this step, we group completed waybills according to their
delivery locations to form several delivery events based on
previously mined location mappings.

In order to construct delivery events, we first need
to obtain the delivery location for each waybill based on
its shipping address. For historical waybills, the delivery
locations can be directly obtained using the address-based
mapping. However, during the online inference phase, it
is possible that some shipping addresses are never seen.
Recall that in Section 4, we maintain the address-based
mapping and the Geocoded location-based mapping. When
running online, there is an accuracy-generalization trade-
off: while the delivery location knowledge from address-
based mapping is more reliable, since each address usu-
ally corresponds to one actual delivery location (, which
might not be true for each Geocoded waybill location), the
possibility that an address has been seen before is smaller
than that of a Geocoded waybill location. Therefore, we
propose a two-level correction strategy (first address-level,
then Geocoding-level) which follows the following priorities
to obtain the delivery location of a waybill: 1) We first
obtain the delivery location by using its address as the key
to query the address-based mapping R, mined from the
historical data. 2) If the address has never appeared, we use
the Geocoding-based mapping R, to obtain the delivery
location based on its Geocoded location. 3) If neither its
address nor its Geocoded location has appeared in the
historical data, we directly use its Geocoded location as the
delivery location.

The procedure of the delivery event construction is de-
tailed in Algorithm 2, which takes completed waybills W,
and two location mappings R, R4 as input, and returns
a mapping £ from delivery location to a set of waybills.
At first, £ is initialized as empty (Line 1). Then, we iterate
over each waybill w in W, and add it to £ according to the
delivery location /4 derived from the shipping address. If
the address appears in R,, we use R,[w.addr] as lg; if that
is not the case, we check whether its Geocoding result [,
appears in R, and can be used. If [, is not in R, either, we
directly use [, as l4 (Line 3-8). Next, we add w to the set of
waybills sharing the same delivery location /4 (Line 9-12).
After W has been iterated, £ is returned (Line 13).

Algorithm 2 Delivery Event Construction.

Input: The completed waybills W, the address-based map-
ping R, and the Geocoded location-based mapping R .
Output: Delivery events €.

1 €+ 0;

2: forw € W do

3: if w.addr € R, then > Address-level Correction
4: lg < Ra|w.addr];
5: else if w.l, € R, then > Geocoding-level Correction
6: lg + Rglw.la];
7: else
8: lg <+ w.lg;
9: if l; not in £ then
10: Elld] + {w};
11: else
12: Ellq) + Ella) U {w};

13: return &;
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5.2 Stay Point Selection

After we construct several delivery events in a trip, we issue
a spatial range query to find stay points within a certain
radius for each delivery event, and then our task is to select
a stay point, which corresponds to the main stay point of
that delivery event. After the stay point is selected for each
delivery event, the time of stay point is used as the inferred
delivery time for all waybills in the delivery event.

In DTInf [1], we train an MLP model to classify whether
a stay point is the main delivery caused stay point of an
event, and during the inference phase, we select for each
delivery event the stay point with the highest probability as
the prediction result. Such a method independently classi-
fies each stay point, while the existence of other stay points
in the neighborhood of a delivery event would also affect
the judgement about whether the stay point is caused by its
delivery. For example, according to the domain knowledge,
a courier is likely to deliver a parcel when he/she visits its
delivery location for the first time in a trip, which means
the stay point which has earlier time among candidates
has higher possibility to be the delivery caused stay point.
For another example, we find the duration of the delivery
caused stay point is usually longer than other candidates,
which might be accidentally generated. The ranking of
duration is also a relative relationship.

In order to capture such temporal dependency and the
inter-relationship among candidate stay points of a delivery
event, as well as handle varying number of candidate stay
points of different delivery events, we propose SPSelector,
which is inspired by the pointer network [4]. The pointer
network uses the RNN and the attention mechanism to
learn the conditional probability of an output sequence with
elements that are discrete tokens corresponding to positions
in an input sequence.

Model Architecture. The overall architecture of SPSelector
is shown in Figure 10. Our model is an end-to-end deep
neural network based on the encoder-decoder architecture.
It takes a delivery event and its candidate stay points as
input, and generates the probability distribution among
candidates. As shown in Figure 10, SPSelector consists of
three layers: representation layer, encoder layer and selec-
tion layer. The representation layer utilizes various features
extracted from the delivery event and candidate stay points
to generate dense representations. The encoder layer uses
the bidirectional Gated Recurrent Unit (GRU) [7] to in-
corporate the temporal dependency, fuse inter-relationship
among candidates, and generates stay point embeddings.
The selection layer uses the attention mechanism to produce
the probability distribution among candidates by treating
the dense representation of the delivery event as the query
vector and stay point embeddings as the key vectors. Finally,
the stay point with the highest probability is selected.
Representation Layer. The goal of the representation layer
is to generate comprehensive representation from both de-
livery event and its candidate stay points.

e Delivery event representation. For each delivery event, we
generate three types of features: 1) the aggregated waybill
information, including the number of waybills, the num-
ber of customers, total weight, and total volume of way-
bills in the delivery event; 2) the POI category of the de-
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Fig. 10. SPSelector Architecture.

livery location; and 3) the spatial context, which is formed
by dividing the neighborhood of delivery location into
uniform grids, and the aggregated waybill information in
each grid are calculated. The first two types of features
are both related to the characteristics of main delivery
caused stay point (e.g., the delivery duration), and the
third feature would make the model aware whether there
are other delivery events in a certain neighborhood region
to influence the appearance of stay point at that region.
Given that the POI category is categorical, and the spatial
context is sparse, to fuse those three types of features,
we first feed the POI category into the embedding layer,
and the spatial context into a dense layer to generate low-
dimensional vectors, then they are concatenated with the
aggregated waybill information to generate the delivery
event representation, which also serves as a query vector
in the selection layer. We denote it as q € R™.

e Stay point representation. For each stay point, we also
generate three types of features: 1) the stay point char-
acteristics, including the duration and area of the stay
point; 2) the matching features, consisting of the distance
and the bearing angle to the delivery location; and 3) the
spatial context, which is obtained in the same way like
the spatial context of the delivery event, except that the
center is moved to the stay point. The first type of features
is important to judge whether a stay point is a delivery
caused stay point, while the second and the third type
of features are vital to judge where the stay point is the
delivery caused stay point of the current event. To fuse
those features, similarly, we first feed the spatial context
into another dense layer to generate a low-dimensional
vector, then it is concatenated with the other features to
generate the stay point representation.

Encoder Layer. The encoder layer is designed to incorporate
the temporal dependency and fuse the inter-relationship
among stay points. To achieve this goal, we employ the
bidirectional GRU [7]. The GRU is first proposed to solve
the machine translation task, and the bidirectional extension
allows two neural network layers to receive information
from both past and future states by connecting them to a
single output and ultimately improves the performance of
some tasks, e.g., sequence classification. Since we not only
want the module to capture the temporal dependency, but
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also fuse information among candidates, the bidirectional
GRU is suitable for our task.

We sequentially feed the stay point representations gen-
erated in the previous layer into the bidirectional GRU by
the time order of the stay point. We name the output of the
GRU as stay point embeddings, denoted as {h;, hs,....,h,},
where n is the number of candidates, h; € R?", and h is the
number of hidden units of the GRU from one direction.
Selection Layer. The selection layer takes the stay point em-
beddings and the query vector, and produces the probability
distribution among stay points.

Given the k-th stay point embedding in candidates, we
employ an attention mechanism to adaptively calculate the
matching score e, between the query vector q and the stay
point embedding hy:

ex = v tanh(Why, + Uq + b) 3)

where v,b € R?, W € RP*?" and U € RP*™ are the
parameters to be learned, and p is a hyper-parameter.

Then, e; is normalized among all candidates by the
softmax function to generate the probability py:

_ exp(er) 4
P ST ep(en) @

Training and Prediction. In the training process, we con-
sider the stay point selection as a classification problem
with multiple classes. Therefore, the cross-entropy is used
to calculate the selection loss, which is defined as follows:

L) =-> yilogp; 5)
=1

where 6 are all learnable parameters, n is the number of
candidate stay points of the event, y; is a binary ground
truth indicating whether the i-th candidate of the event is
the main delivery caused stay point of it.

In the inference process, the stay point with the maxi-
mum predicted probability is selected, and the time of stay
point is used as the inferred delivery time for all waybills in
the delivery event.

6 EXPERIMENTS
6.1 Experimental Settings

Datasets. The datasets contain trajectories and waybills of 5
couriers who are known to confirm the delivery roughly on
time at a delivery station in Tongzhou District, Beijing over
a period of about 15 months (from Apr. 1274, 2018 to Jul. 7%,
2019).

o Couriers’ trajectories. They are raw GPS logs generated
by couriers’ PDAs, where each record contains a courier
ID, a location, and a timestamp. The average sampling
time interval is 7.4 seconds. The datasets contain 5.93
million GPS points.

o Waybills. Each record contains a customer ID, a courier
ID, parcel information (e.g., weight and volume), the time
when the parcel is received, the time when the parcel is
delivered, and a Geocoded wayhbill location. The datasets
contain 274 thousand waybills.

8

After the data pre-processing step, waybills and stay
points detected from trajectories are organized by delivery
trips. The trips without trajectories are dropped. There are
3,653 delivery trips in total. For each courier, we use his/her
former 80% trips for training, the following 10% trips for
validating, and the last 10% trips for testing. The delivery
location mining is conducted based on the training and val-
idation trips, which contain 2,506 unique Geocoded waybill
locations. 12.9% Geocoded waybill locations in the test trips
have not appeared in former trips.

Evaluation Metrics. We use the time of delivery caused stay
points for waybills as the ground-truth. The reason is that
the delivery time recorded in waybills is not completely
accurate. According to some domain experts, a courier
might confirm the delivery of a parcel at any time during the
delivery for the corresponding delivery location. However,
the recorded delivery time can indicate the time period of
the stay point at which the parcel is delivered. Therefore,
we report the MAE and the RMSE based on the inferred
delivery time and the time of delivery caused stay points
to mitigate the error of human annotation as much as
possible. We also use the accuracy, which is defined as
the proportion of waybills whose corresponding delivery
caused stay points are correctly selected (i.e., their inferred
delivery times are accurate).

Baselines. To the best of our knowledge, there is no existing
solution that can exactly tackle our problem. Therefore, we
design the following four baselines for comparison:

e Random Inference (RDInf): We randomly select a stay
point from candidates as its delivery caused stay point.

o Spatial Nearest Inference (SNInf): SNInf matches each
waybill with its closest stay point in candidates.

o Temporal Longest Inference (TLInf): TLInf selects the stay
point in candidates with the longest duration.

o Temporal Earliest Inference (TEInf): TEInf selects the stay
point in candidates with the earliest time.

Variants. We also compare DTInf* with its seven variants to
evaluate the effectiveness of each component:

o DTInf [1]: It is the prior version of this work. The main dif-
ference between DTInf and DTInf* is that DTInf assumes
each Geocoded waybill location corresponds to one deliv-
ery location, and classifies each stay point independently
using an MLP, which does not consider the interaction
relationship among candidate stay points, neither the
spatial context of stay points and delivery events.

o DTInf*-nPN: This variant doesn’t use the pointer network
structure, and trains an MLP model which takes features
of a delivery event and a stay point as input, and predicts
whether the stay point is the delivery caused stay point of
that event.

e DTInf*-nC: This variant does not correct the delivery
locations, which treats the Geocoded waybill location of
a waybill as its delivery location.

o DTInf*-AC: This variant obtains the delivery location for
each waybill only based on the address-based mapping.
If its address is not in the mapping, its Geocoded waybill
location is treated as the delivery location.

o DTInf*-nM: This variant performs the stay point selection
without a model, and selects the closest stay point to the
corrected delivery location.
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o DTInf*-nCTX: This variant does not use the spatial context
features.

e DTInf*-nE: This variant does not construct delivery
events. Instead, it infers delivery caused stay point for
each waybill based on the same model, but the delivery
event features are replaced with individual waybill fea-
tures.

Parameter Settings. There are 16 POI categories we obtained

via the reverse Geocoding service. The location merging

parameter D is set to 20m by default. The query radius

R is set to 70m to find stay point candidates to cover all

delivery caused stay points according to Figure 2(a). For

the spatial context feature, we define the 140m x 140m
square region as the neighborhood, and divide the region
into 3 x 3 uniform grids, which shows the best performance.

In SPSelector, h = 16 and p = 32. During the training phase,

we leverage Adam [8] to perform network training with a

learning rate le-4 and the batch size is 16. The learning rate

is halved every 20 epochs.

Implementations. Our algorithms are implemented in

Python. SPSelector is implemented by PyTorch. Experiments

are conducted on a workstation with an Intel(R) Core(TM)

CPU i7-8700K @ 3.7GHz, 32GB memory, and Windows 10.

6.2 Data Descriptions

Delivery Trip Distribution. Figure 11(a) and 11(a) gives the
distribution of the trip duration and the trip length detected
from the delivery trip identification step in Section 3.3. The
average duration of a delivery trip is about 3.2 hours, and
the maximal duration does not exceed 7 hours, because a
courier needs to go back to the station to receive newly
arrived parcels after a certain time period. The average
length is 8.3 km. Since a courier is assigned to deliver parcels
for some regions that are spatially close, the length of the
trip usually is not long.

Waybill Distribution. Figure 11(c) and 11(d) show the dis-
tribution of the number of waybills and unique Geocoded
waybill locations in each delivery trip, respectively. As can
be observed, a courier needs to deliver 52 waybills in each
delivery trip on average. Since some waybills are in the
same building, or belong to the same customer, there are
22 unique Geocoded locations to be delivered on average.
Stay Point Distribution. Figure 11(e) shows the distribution
of the number of stay points in each delivery trip. The
average number of stay points is 34, which is larger than the
average number of Geocoded waybill locations. It validates
our claim that a courier stays at a location during a delivery
trip not only because of the delivery, but also for some other
purposes. We also plot the distribution of the number of
stay points near each waybill in Figure 11(f). As shown in
the figure, 81% waybills contain more than one stay point in
their neighborhood (R = 70m), which implies that the stay
point selection is necessary.

6.3 Effectiveness Evaluation

Overall Evaluation. The overall performance of DTInf*
compared with baselines and variants is shown in Table 1.
Among 4 baselines, RDInf only achieves 41.0% accuracy.
TEInf is better than random guess, which means the earlier
appeared stay point is more likely to be the delivery caused
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stay point. Comparing SNInf and TLInf, we can find that
the matching based on the duration is a better heuristic.
DTInf* outperforms the best baseline (TLInf) by 52.8% in
terms of MAE. After improving the delivery location min-
ing methods and modeling techniques, we achieve 30.8%
performance gain in terms of MAE, compared to DTInf.
Different Delivery Location Correction Methods. We also
compare different delivery location correction methods in
Table 1 to show the importance of delivery location mining.
Comparing SNInf and DTInf*-nM, we can see that after
the locations are corrected, a 30.7% performance gain is
witnessed using the spatial nearest heuristic. Comparing
DTInf"-nC and DTInf*, we find that if the model is trained
based on the Geocoded locations, its effectiveness is de-
graded. DTInf"-AC is also less effective than DTInf*, which
shows the necessity of maintaining both the address-based
mapping and the Geocoded location-based mapping. It is
inevitable that during the online inference, new addresses
would appear. The Geocoded location-based mapping pro-
vides an effective backup in case an address is new while its
Geocoded location has ever appeared in the historical data.
We also note that if express lockers exist in the delivery
region, the performance of non-correction-based methods
(i.e., all baselines and DTInf*-nC) could be even worse since
the delivery caused stay point might be far away from the
Geocoded waybill location, while other methods are less
affected, which consider the distance to the actual delivery
location.

Different Stay Point Selection Strategies. We also compare
different stay point selection strategies in Table 1 to show the
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TABLE 1

Comparison with Baselines and Variants.

Methods Accuracy (%) | RMSE (s) | MAE (s)
RDInf 41.0 2725.8 1254.5
TEInf 47.6 2434.7 1124.5
SNInf 55.8 2361.5 868.9
TLInf 71.3 1713.4 588.1
DTInf*-nM 66.7 1954.5 601.8
DTInf 75.5 1365.6 401.0
DTInf"-nPN 774 1278.1 336.6
DTInf*-nC 78.1 1324.9 376.4
DTInf"-AC 78.4 1154.0 316.5
DTInf*-nE 79.5 1183.9 312.6
DTInf*-nCTX 79.5 1082.5 286.5
DTInf* (ours) | 79.8 [ 10517 | 277.3

advantages of the proposed method. Comparing DTInf*-
nM and DTInf*, we find the modeling-based stay point
selection significantly outperforms simple heuristics. The
performance of DTInf*-nPN is much worse than DTInf",
which shows the importance of considering all candidates
jointly rather than independently classifying each of them,
since the pointer network-like structure is able to capture
the sequence and relative information among candidate stay
points. The performance gap between DTInf" and DTInf*-
nE shows the superiority of the delivery event modeling
than modeling each waybill individually. The reason is that
when a courier stays at a location for a while, he/she usually
delivers a batch of parcels, all of which contribute to the
duration of the stay. Therefore, the event-based matching is
more reasonable and thus has better modeling performance.
DTInf*-nCTX is also worse, which shows the spatial context
of the delivery event and the stay point also affect the
judgement of delivery caused stay points.

Merging Distance Selection. In order to model the delivery
event accurately, we need to select an appropriate location
merging parameter D by varying it from Om (no merging)
to 40m. The time inference error is reported in Figure 12(a),
which shows the MAE first drops and then increases. The
reason is that when D becomes larger, redundant delivery
locations are merged, which makes the delivery event mod-
eling more accurate. However, when D is larger than 20m,
the performance is degraded, because we might merge ad-
jacent delivery locations by mistake. We also report the ratio
between the number of delivery locations and Geocoded
waybill locations (denoted as the location ratio) in the same
figure. It shows that the location ratio first decreases sharply,
and then changes smoothly, which also demonstrates the
redundancy issue of delivery locations. Therefore, we set the
turning point 20m as the merging distance D. We also plot
the distribution of the distance shifts of correction locations
with respect to the delivery caused stay points in Figure 2(a).
Different Correction Types. We are also interested in the
performance differences of DTInf* when faced with way-
bills whose address/Geocoded locations have ever been
seen or not. Figure 12(b) shows that if we can obtain
the delivery locations based on the addresses (AddrLevel),
which takes up for 75.5%, the MAE is 230s. If the Geocoded
waybill locations have appeared while the addresses have
not (GeoLevel), which takes up for 23.2%, the error is
422s. For waybills whose addresses or Geocoded waybill
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Fig. 12. Effectiveness Experiments.

(b) Different Correction Types.

locations have never appeared in history (N/A), the error
is 438s. Although, if the delivery location is obtained from
the Geocoded location-based mapping, the performance
improvement compared with directly treating the Geocoded
location as the delivery location is not significant, waybills
whose addresses are new, but their Geocoded locations
have ever appeared take up for 23.2% in our evaluation
dataset. Two-level correction ultimately makes the overall
inference error smaller according to DTInf"-AC and DTInf*
in Table 1. Another interesting point is that although there
are 12.9% Geocoded waybill locations have not appeared in
history as we mentioned in the datasets, those waybills only
correspond to 1.3% in total test waybills, which indicates
that the locations that more waybills are affiliated with,
have a higher chance to appear in history, and the delivery
location correction is applicable to the majority of waybills.

6.4 Case Study

We further give a case study of a delivery trip on the
morning of Jun. 16", 2019, which is one of the delivery
trips in the evaluation dataset. Figure 13 shows the satellite
image of a region in Tongzhou District. There is a waybill
whose Geocoded location is displayed with the red triangle.
The blue dots are the centroids of stay points detected
from the courier’s trajectory of the corresponding delivery
trip, where the stay point with the longest duration in the
neighborhood is sps. However, according to the ground-
truths, the parcel is delivered during the time interval of
sp3, which leads to a great time inference error. Fortunately,
this Geocoded waybill location has been delivered multiple
times in history, so we are able to correct it. The corrected
location is shown with the green triangle, which is much
closer to the delivery caused stay point. Nevertheless, if
we just employ the spatial nearest heuristic, sp1g would
be inferred as the matched stay point, which also leads to

A Geocoded Waybill Location
A Corrected Location
.Centroid of Stay Point

12:34 (0.6min)

10:42(63.7min)
Fig. 13. Case Study.
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large inference error. DTInf" successfully selects sp; among
candidate stay points because it considers various factors.

7 SYSTEM DEPLOYMENT

Our delivery time inference system is deployed internally
in JD Logistics. In order to process massive couriers’ trajec-
tories, we leverage our self-developed platform, JD Urban
Spatio-Temporal Data Engine (JUST) [9], to efficiently per-
form the noise filtering and the stay point detection in the
distributed environment based on Apache Spark and HBase.
The spatio-temporal index is also built over detected stay
points based on JUST to accelerate the process of querying
stay points near the delivery locations. When running on-
line, our inference process is activated as soon as a courier
ends his/her trips and commits parcels he/she fails to de-
liver. For waybills whose Geocoded waybill locations newly
appeared, couriers would be asked to record the delivery
time optionally in order to correct the delivery locations for
better delivery time inference in the future.

The interface of our system is shown in Figure 14, which
allows operators to visualize couriers’ delivery trips and
understand the inference process. The interface contains
four components:

Operation View. In this view, the operator can perform
several operations. There are four main buttons: 1) Retrieve,
which is used to query waybills and trajectories of a trip that
is specified; 2) Correct, which corrects the delivery location
of waybills in the current trip; 3) Query, that issues spatio-
temporal query to find stay points near the delivery location
of each waybill; and 4) Infer, that infers the delivery caused
stay point for each waybill.

Main Map View. The right part is the main map view.
When the delivery trip is retrieved, courier’s trajectories
(grey line), stay point centroids (blue circle), and Geocoded
waybill locations (red triangle) are visualized. After Correct
is clicked, the corrected delivery locations are displayed
with the green triangles, and the big red circles indicate the
querying neighborhood. Finally, when the operator clicks
Infer, a link would be generated between the corrected
location and the inferred delivery caused stay point.
Waybill Information View. This view displays the detailed
information about the retrieved waybills. The waybill ID,
the customer ID, the weight and the volume are shown. If
one of the waybills is selected, the location of the waybill
would appear within the map view, and the inferred stay
point will appear in the result view.

Result View. The view shows the detailed information of
the inferred delivery caused stay point for the selected
waybill. It displays the start time, the end time, and the
duration of the stay point.

8 RELATED WORK

Trajectory Annotation. In this work, we essentially want
to annotate some stay points in trajectories with parcels
delivered during the time interval of them, which is related
to the trajectory annotation. The trajectory annotation aims
to enrich trajectories with the semantic information [10]. The
annotation techniques are mainly concerned with annotat-
ing trajectories with maps [11], [12], [13], [14], [15], [16] and
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recognizing the transportation modes [17], [18]. Annotating
moving trajectories with roads is also known as the map
matching [11], [12]. Annotating stay points with POlIs is
usually based on the geometric intersection or the spatial
nearest neighbor [13], [14]. Many candidate POIs may exist
in some densely populated urban areas, therefore, Yan et
al. [15] attempted to infer the POI categories based on a
Hidden Markov Model to maximize the visiting sequential
probability. Keles et al. [19] predicted POI categories using
a Bayesian Network, which considers the time of the day,
the day of the week, and the duration of the stay point.
Suzuki et al. [16] inferred the exact POIs a user visited
under the integer linear programming framework, which
also considers various features from POIs and stay points.
For the POI assignment tasks, the stay duration differences
are usually caused by different POI categories, while in our
problem, the number of customers at a delivery location
plays the dominant role. Apart from that, for the trajectory
annotation, a specific POI would be annotated for multiple
times or not be assigned, both of which are not acceptable
in our scenario.

Trajectory Data Mining. The trajectory data mining [5]
studies discovering various knowledge from massive trajec-
tory data. To enhance the existing maps, [20], [21], [22], [23]
studied the road network generation or refinement based on
crowd sourced trajectories, and [24], [25], [26], [27] studied
discovering interesting places from trajectory hotspots. To
help urban planning, [28], [29] gave the bike path lane
planning or electric fence construction recommendation. To
increase the commercial profits, [30], [31] aimed to select
the best location for the billboard placement. To improve
the user experience, [26], [32] studied the traveling recom-
mendation. In this work, we discover the delivery locations
based on trajectories and the recorded delivery time, which
are further used to help the delivery caused stay point
recognition.

Urban Computing. Urban computing [33] aims to solve
the issues caused by human’s rapid progress in urban-
ization, such as anomaly detection [34], [35], crime rate
inference [36], air quality prediction [37], and resource re-
balancing [38], [39]. In our work, we focus on easing the
burden of couriers by automatically inferring the delivery
time based on their trajectories.
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9 CONCLUSION

In this paper, we propose DTInf", a system to automatically
fill the delivery time based on couriers’ trajectories. Our
method first separates waybills and stay points detected
from trajectories by delivery trips, then mines delivery
locations knowledge from historical trips by maintaining
address-based mapping and Geocoded location-based map-
ping, and finally during the online inference, it constructs
delivery events for waybills based on offline mined delivery
locations, and predicts the delivery caused stay point for
each event using a pointer network-like model SPSelector,
which is further used to infer the delivery time of waybills in
it. Experiments show our method significantly outperforms
baselines by at least 52.8%. And a case study is further
conducted to illustrate the advantage of our solution. Fi-
nally, a system is deployed in JD Logistics. In this work, the
delivery location mining is only applicable to couriers who
confirm the delivery of parcels roughly on time in history.
In the future, we would explore ways to infer the delivery
locations for addresses even if couriers confirm deliveries
with significant delays, so that the automatic delivery time
filling can also be applied to those couriers.
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