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Abstract—Nowadays, many cities are suffering from air pollution problems, which endangered the health of the young and elderly for
breathing problems. For supporting the government’s policy-making and people’s decision making, it is important to predict future
fine-grained air quality. In this paper, we predict the air quality of the next 48 hours for each monitoring station and the daily average air
quality of the next 7 days for a city, considering air quality data, meteorology data, and weather forecast data. Based on the domain
knowledge about air pollution, we propose a deep neural network based approach, entitled DeepAir. Our approach consists of a deep
distributed fusion network for station-level short-term prediction and a deep cascaded fusion network for the city-level long-term
forecast. With the data transformation preprocessing, the former network adopts a neural distributed architecture to fuse
heterogeneous urban data for simultaneously capturing the direct and indirect factors affecting air quality. The latter network takes a
neural cascaded architecture to learn the dynamic influences from previously existing data and future predicted data on future air
quality. We have deployed a real-time system on the cloud, providing fine-grained air quality forecasts for 300+ Chinese cities every
hour. Our system mainly consists of three components: data crawler, task scheduler, and prediction model, which are implemented
with a multi-task architecture to improve the system’s efficiency and stability. Based on the datasets from three-year nine Chinese
cities, experimental results demonstrate the advantages of our proposed method.

Index Terms—Air Quality Prediction; Deep Learning; Data Fusion; Urban Computing
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1 INTRODUCTION

W ITH the rapid development of urbanization, air pol-
lution is becoming a severe issue for many cities [1].

Air pollution consists of a mixture of particulate matter (i.e.,
PM2.5 and PM10) and gaseous species (i.e., NO2, CO, O3

and SO2), which have both acute and chronic effects on
human health, especially for young and elderly on breathing
problems [2]. For monitoring real-time air pollution, Chi-
nese governments have built many air quality monitoring
stations and published air quality information to the public
every hour [3]. Besides monitoring, there is a rising demand
for predicting future fine-grained air quality. Such predic-
tions can inform the government’s policy-making (e.g., per-
forming traffic control) and people’s decision making (e.g.,
whether to exercise outdoors tomorrow).

However, predicting future air quality is very challeng-
ing because of the following reasons:

First, air quality has multiple influential factors. As
shown in Figure 1, air pollutant sources mainly come from
vehicle exhaust, industrial emission, coal burning, and dust
[4], where each source has different spatio-temporal patterns
and pollutant particles. Moreover, the air quality is affected
by local emission, regional transport, meteorological con-
ditions [5]. Depending on the impact, these factors fall into
two groups. Local emission and regional transport are direct
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Fig. 1. Multiple influential factors on air pollution

factors as they mainly determine the formation of pol-
lutants; meteorological conditions, secondary productions,
terrain, and time are indirect factors as they primarily decide
the development environment of pollutants. However, we
do not have sufficient and accurate data to model these
factors precisely [6]. For example, it is almost impossible
to obtain city-wide pollutant emissions. Likewise, weather
forecasts are not accurate enough as “The longer the forecast
horizon is, the less accurate the forecast will be.”

Second, the interactions between these factors are com-
plex. When predicting air quality with only one kind of
data using multi-layer perceptron, the results of Beijing for
PM2.5 are shown in Figure 2(a). We can see the RMSE of
air quality and weather forecast is opposite along time,
where the former increases while the latter decreases. The
reason behind it is that the historical air quality data is
constant for the day 1 to day 7 predictions, while the
weather forecast data captures the future dynamics until
the time slot to be predicted. As a result, the importance
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Fig. 2. Complex interaction among influential factors

of different data sources is different over time. Thus, it is
important to design an appropriate mechanism to fuse these
data. Moreover, many people have a sense of air quality will
be better after the rain. However, air quality will be worse
in some cases. Figure 2(b) shows the effect of rain on air
quality based on the statistical results of three-year data in
Beijing from our dataset. We calculate ratios by counting the
proportion of ∆k = AQIt+k − AQIt, where AQIt ≥ 100,
Weathert = rain and k is the time interval after rain. Here,
the sum of the raising and dropping ratio is less than 1 as it
exists the situation of unchanged after rain. We can find that
it still has more than 20% ratio that air quality will be worse
after rain with 12 hours later. This is because air quality is
affected by multiple factors simultaneously, where the effect
of a single influential factor is not absolute.

Third, air quality changes over location and time sig-
nificantly and sometimes coming with a sudden change.
As shown in Figure 3, the air quality always fluctuates
along time without apparent daily and weekly periodic
patterns and change differently over locations. Moreover,
we can find some sudden changes where the air quality
index (AQI) drops very sharply in a very short period [7].
As illustrated in Figure 3(b), AQI of monitoring station S2

at the 30th timestamp drops over 200 in the coming two
hours due to a strong wind blowing from the southeast.
Such a sudden change is important, where people always
pay more attention to sudden changes than general cases
in daily life. They only care about future air quality once
the air is polluted seriously and want to know how long
it will be good. However, the presence of sudden changes
is very infrequent in the whole dataset. Among the three-
year air quality data, the presence of sudden changes is less
than 2.3%. Such a data imbalance phenomenon brings many
difficulties for air quality prediction.

Fig. 3. Air quality change over location and time

To address these challenges, we propose a DNN based
approach to predict the air quality of the next 48 hours for
a monitoring station and the daily average air quality of the
next 7 days for a city, considering air quality data, meteorol-
ogy data, and weather forecasts. Our approach is inspired
by the domain knowledge about air pollution, which can
help design model structure with more interpretations. For
short-term predictions, as direct and indirect factors have
different influences on air quality and all indirect factors will
affect direct factors, we capture these individual and holistic
influences simultaneously by distributed fusion architec-
ture. For long-term predictions, considering the opposite
effect of historical air quality and weather forecast along
time, we combine the advantages of these two features
for capturing the dynamic interactions by cascaded fusion
architecture. Our contributions are listed as below:

• We develop a real-time air quality prediction sys-
tem, providing short-term and long-term prediction
services for 300+ cities. To improve the system’s
efficiency and stability, we implement three core sys-
tem components, data crawler, task scheduler, and
prediction model, with a multi-task architecture.

• For station-level short-term prediction, we propose
a deep distributed fusion network, which adopts a
novel distributed architecture to fuse heterogeneous
urban data for simultaneously modeling the individ-
ual and holistic influences.

• For city-level long-term prediction, we propose a
deep cascaded fusion network, which adopts a novel
cascaded architecture to fuse the previously existing
data and future predicted data for learning the con-
textual influences.

• Based on three-year data from nine Chinese cities, the
results demonstrate the advantages of our proposed
approach for both station-level short-term and city-
level long-term air quality prediction.

2 SYSTEM OVERVIEW

Figure 4 shows the system architecture, which mainly con-
sists of three parts: Data Crawler, Task Scheduler, and
Prediction Model. Here, we consider air quality data, me-
teorology data, and weather forecast data as real-time data
sources. Data crawler, deployed on the cloud, continuously
collect these real-time data from web pages or API interfaces
and then feed these data into Database (e.g., MySQL) and
cache (e.g., Redis). If the collected data meets the require-
ments of prediction, the task scheduler will invoke the
prediction model. Note that, data crawler and task sched-
uler are implemented with a multi-thread and multi-queue
based multi-task architecture for improving the system’s
efficiency. As for the prediction model, we respectively
predict station-level short-term air quality and city-level
long-term air quality after data preprocessing. Here, we
train the neural networks in the local GPU servers and
run predictions on the cloud, where online prediction is
implemented with multi-task architecture. Then, prediction
results are stored in another cache for fast data changing to
end-user. To back up the data, prediction results will backup
to the Database periodically. Finally, we visualize the real-
time prediction results on the web through web services.
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Fig. 4. Architecture of air quality prediction system

2.1 DATA CRAWLER

Data crawler is the most basic and fragile component of
a real-time system, which provides essential data to keep
the system stable. However, it is difficult to crawl these
dynamic data effectively. The reasons are two-fold: First,
numerous different data sources need to be collected. The
meteorology/weather forecast/air quality data are collected
from 302 Chinese cities, 2,812 districts, and 2,296 air quality
monitoring stations. Second, the updating frequency of dif-
ferent data sources is completely different due to many com-
plex factors. Typically, the updating time of air quality data
and meteorology data is one-hour, while for the weather
forecast data, the updating time is twelve-hour. However,
the updating time of different stations/cities are different,
some are fast, and some are slow. Even for a station, the
updating time is unstable.

To improve our system’s efficiency and robustness, we
designed the data crawler with a multi-thread and multi-
queue based multi-task architecture. Here, we consider
crawling one kind of data of a city as a task, where each
task will be run with a thread, respectively. As the number
of tasks is huge, we aggregate all tasks from the same
web domain as a task queue, e.g., crawl meteorology data
of all Chinese cities from http://www.weather.com.cn/.
Thus, we can crawl these data in a parallel manner for
fast data collecting in a near-real-time manner. Moreover,
as the characteristics of all web pages in the same web
domain are similar, it is also simplified configuration and
fast management with this grouping strategy.

Figure 5(a) depicts the procedure of data crawler. When
the program starts, we first initialize each task queue config-
uration, including the target URLs, maximum parallel num-
ber, maximum crawl time interval, time sleeping interval.
Then, we check each crawl task’s time interval after the
same task’s last crawl time. If it exceeds a threshold, we
pop this task from the task queue and crawl the web page.
Here, we can not continually crawl one web page for two
reasons: resource-wasting and the web may block IP. After
web data parsing, we can get the target data. If the data is
updated comparing with the last updated time, we update
it into our database and cache. After that, this task will be
inserted into the tail of the queue and waiting for the next
task call. For all tasks in the same task queue, they are run
in a sequential manner; while for the tasks in the different
task queues, they are run in a parallel manner.

Fig. 5. Procedure of data crawler and task scheduler

2.2 TASK SCHEDULER
As the updating time of air quality data for 300+ cities is
different, it is important to make predictions for each city
asynchronously. Thus, we design a task scheduler module,
which schedules the time for prediction after checking the
collected data. As is shown in Figure 5(b), the schedule
module is a loop execution service with multi-thread based
multi-task architecture. Here, we consider scheduling the
prediction for a city as a task, where each task will be run
with a thread. For each task, it reads the updating time for
each station firstly. Then, we check the updating time of
all stations in a city. If the number of updated stations on
a city’s total stations exceeds a threshold, we conduct the
predictions. If not, we check the time interval from the last
prediction. If we find the time interval does not exceed a
threshold, the thread will be hung up and wait for the next
wake-up. Thus, the task scheduler can decide the time and
order. With such a parallel architecture, our task scheduler
can improve the system’s efficiency.

2.3 Prediction Model
The prediction model is a core part of the system. Here, we
propose a deep distributed fusion network for predicting
station-level air quality of the next 48 hours and a deep
cascaded fusion network for predicting city-level daily av-
erage air quality of the next 7 days. The details about the
prediction model are described in Section 3. As the updating
time of different cities is different, we scale a few instances
for parallel running predictions following the command of
the task scheduler. With such multi-task architecture, we can
improve the systems efficiency.

2.4 WEB INTERFACE
Figure 6 shows the web interface of our air prediction
system. All stations of a city are marked on the map and
attached with their real-time AQI, where the darker color
represents the worse air condition. In our system, we can
get station-level air quality prediction for the following 48
hours, as is depicted in the center of the figure, and the
city-level daily air quality prediction for the next 7 days, as
is shown in the right chart of the figure. Here, we provide
different cities and pollutants for users to select.
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Fig. 6. Web interface of our system

3 PREDICTION MODEL

As different users have different prediction requirements,
some care about station-level short-term, and some care
about city-level long-term. Thus, we predict the fine-grained
air quality in both settings with a deep distributed fusion
network and a deep cascaded fusion network.

3.1 Station-level Short-term Prediction
As shown in Figure 7, for station-level short-term air quality
prediction, we propose an approach, entitled DA-Short,
which consists of a spatial transformation component and
deep distributed fusion network. Considering the spatial
correlations, the spatial transformation component uses the
partition, aggregation, and interpolation to convert the spa-
tial sparse air quality data into a consistent input, named
AQIs. Then, AQIs and other datasets, i.e., meteorology,
weather forecast, are fed into a deep distributed fusion net-
work to model the individual and holistic influences simul-
taneously. Here, we use the embedding of AQIs to simulate

Fig. 7. Framework of station-level short-term prediction

the direct factors and use the embedding of rest datasets
as indirect factors. As we knew, each indirect factor has its
effort on direct factors affecting future air quality. Thus, we
build four subnets (HW, WF, SP, and MP) to capture the
individual influences from the historical weather, weather
forecast, secondary productions, and meta properties from
time and terrain, respectively. Besides individual influences,
we build a subnet (HI) to learn the holistic influence by
fusing all direct and indirect factors. After that, the outputs
of five subnets are aggregated to generate the final results.

Here, for temporal granularity, we collectively predict
the air quality in a couple of hours, e.g., 1-3 hours, as
weather forecasts are segmented into 3-hour time intervals.
For spatial granularity, we build one predictive model for
all monitoring stations in the same city as the spatial trans-
formation component will generate a consistent input.

3.1.1 SPATIAL TRANSFORMATION
As pollutants are dispersed in geographical space [6], the air
quality of a geo-location not only depends on its previous air
quality but also depends on the air quality of its neighbors.
However, as shown in the left bottom of Figure 7, air quality
monitoring stations are randomly scattered in geographical
space, where the color on the dot means the level of air
quality. For converting spatial sparse air quality data into
a consistent input for the further predictive model, we
devise the spatial transformation component, which mainly
consists of partition, aggregation, and interpolation.

Firstly, we partition the geographical space into 16 re-
gions by four lines and two circles, e.g., 20 km and 100 km
semidiameter. Thus, all regions share the target monitoring
station as a common center, and regions in the inner circle
have a small area, while regions in the outer circle have a
big area. Also, regions with different angles fit eight wind
directions, which may be further captured by meteorological
conditions. Furthermore, we aggregate the readings of air
quality recorded by monitoring stations within the regions.
As a result, regions with at least one station will have one
average AQI. However, from the partition results of Beijing,
we find that different target stations have different missing
patterns, and about 33% regions do not have monitoring
stations. Thus, we fill the missing values in these regions.
Specifically, we first randomly generate some fake monitor-
ing stations in these regions. Then, we use a classic spatial
interpolation method, inverse distance weighting (IDW) [8],
to interpolate the AQI of fake monitoring stations. Consid-
ering the geo-spatially adjacent stations located both inside
and outside the outer circle, IDW assigns a weight to each
available AQI reading of adjacent stations by the distance
to the target sensor, and then aggregates these weights and
readings by weighted average. After that, we aggregate the
interpolated values of fake stations to calculate the average
AQI for the region. Finally, we get 17 AQI in one timestamp
where 1 AQI comes from the target station, and 16 AQI
come from neighbor regions. We conduct the same process
for each monitoring station over time.

We design the spatial transformation, considering the
following three aspects. 1) Air pollution dispersion. Al-
though we do not have first-hand city-wide pollutant emis-
sion data, the readings of air quality recorded by monitoring
stations can be regarded as second-hand pollutant sources

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on January 05,2021 at 23:34:52 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.3047078, IEEE
Transactions on Big Data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

as air pollutants are dispersed among different locations.
With the signals from spatial neighbors, the further predic-
tive model can incorporate more information. 2) Spatial cor-
relations. Spatial partition merges the scattered air quality
data into regions. Closer regions have finer granularity, and
farther regions have a coarser granularity. Moreover, regions
with different distances show different impacts varying by
distance, which follows the First Law of Geography [9], i.e.,
”Everything is related to everything else, but near things
are more related than distant things.” 3) Scalability. Spatial
aggregation reduces model complexity as it sets an upper
bound (the number of regions) for the input. Moreover,
spatial interpolation overcomes spatial sparsity by filling
the missing values and generating a consistent input for
all monitoring stations, which will further facilitate data
augmentation for training deep neural networks.

3.1.2 DEEP DISTRIBUTED FUSION

As we know, air pollution has multiple influential factors,
where local emission and regional transport are direct fac-
tors, while meteorological conditions, terrain and time are
indirect factors. Moreover, direct and indirect factors have
different influences on future air quality. At most times,
all indirect factors will simultaneously affect direct factors.
Also, each indirect factor has its effect on direct factors. For
simultaneously capturing these influential factors, we pro-
pose a distributed fusion architecture based neural network,
as shown in the top area of Figure 7.

Firstly, we use the embedding [10] of influential fac-
tors to simulate the direct factors and indirect factors. For
categorical features, embedding can transform the features
represented by one-hot encoding to a real-valued vector
for capturing the categories’ similarity. While for numerical
features, embedding can transform the raw features into a
low-dimensional space for learning the hidden represen-
tation. Then, we design a distributed fusion architecture
with five subnets (HW, WF, SP, MP, and HI) to model
the holistic influence from all influential factors and the
individual influences from the historical weather, weather
forecast, secondary productions, and meta properties. Our
model is end-to-end and we can optimize the embedding
parameters together with other parameters in the neural
network during the model training phase.

As illustrated in 8(a), distributed fusion architecture
specifies the direct factor as main feature and other indirect
factors as auxiliary features. Then, main feature respectively
interacting with each auxiliary feature in a parallel manner
and merges the outputs to learn the joint effects. With such
architecture, we can highlight the main feature and capture
the influences from auxiliary features. The reason for the
partition is main feature and prediction target come from
the same domain, while auxiliary features and prediction
targets come from different domains. In our task, we specify
the embedding of AQIs as main feature and the embedding
of other features (i.e. meteorology) as auxiliary features,
where main feature can simulate the direct factors from local
emission and regional transport, while auxiliary features
can represent the indirect factors. Here, the main feature
is shared across all subnets and all subnets have the same
network structure, FusionNet.

Fig. 8. Architecture of distributed fusion

As shown in Figure 8(b), FusionNet comprises a concate-
nate layer, some fully-connected (FC) layers, and a residual
FC layer. Firstly, we merge all features together by using a
concatenate layer, then use some FC layers to learn higher-
order feature interactions. For training the neural network
more robust, we add one residual FC layer [10] between FC
layers, the previous information of which can be directly
passed to the following layers through the shortcut connec-
tions. Residual FC layer is derived from ResNet [11], where
the residual mapping is learned by H(x) = x + F(x) and
broadcast to the following layers.

We build historical weather subnet (HW) and weather
forecast subnet (WF) for capturing historical and future
weather conditions, respectively. The reason for building
such two subnets is about data realism and time inter-
val, where historical weather provides hourly real weather
conditions while the weather forecast provides 3-hour seg-
mented forecasted weather. Here, we consider the weather,
wind speed, wind direction, humidity, and pressure as fea-
tures for historical weather data. While for weather forecast
data, we consider the weather, wind strength, and wind
direction as features. After feeding AQIs and historical
weather into HW subnet, we get yhw as the output. Besides,
we will get ywf as output when we feeding AQIs and
weather forecasts into WF subnet.

Besides the direct emission of pollutants, it exists some
secondary chemical reaction among pollutants in the atmo-
sphere. Thus, we design a secondary production subnet (SP)
to simulate the chemical interaction. After fusing AQIs of
PM2.5 and other pollutants (PM10, NO2, CO, O3 and SO2)
recorded by target station, we get ysp.

Meta property subnet (MP) models the time and terrain
properties affecting air quality. Specifically, we use time
(Month, DayOfWeek, TimeOfDay) to model the air quality
pattern in the temporal dimension, e.g. winter always has
a bad air quality than summer. Also, we use station ID
to simulate terrain affecting air quality, e.g. air quality is
always worse in built-up areas than open areas. After fusing
AQIs, time and station ID in FusionNet, we get ymp.

Except for the individual effects, all indirect factors will
simultaneously determine the development environment of
direct factors affecting future air quality. For capturing such
information, we design the holistic influence subnet (HI)
for learning the holistic influence by fusing all direct and
indirect factors. Then, we get yhi.

Though air quality is affected by multiple factors, the
degree of influences may be different. Inspired by such ob-
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servation, the outputs of five subnets are weighted merged
using a parametric-matrix-based fusion [12] to model the
dynamic influences and generate the final results:

ŷ = Sigmoid(yhw ·whw + ywf ·wwf+

ysp ·wsp + ymp ·wmp + yhi ·whi)
(1)

where ŷ ∈ Rh are the predicted results, yhw,ywf ,ysp,
ymp,yhi are the outputs of five subnets. · is Hadamard
product, and whw,wwf ,wsp,wmp,whi are the learnable
parameters that adjust the degrees affected by these sub-
nets. Here, the prediction results are mapped into [0, 1] by
Sigmoid function. And later, we denormalize the predictions
to get the actual air quality.

3.2 City-level Long-term Prediction
With the DA-Short model, we can predict the next 48
hours’ air quality for each monitoring station. Moreover, it
is important to predict the daily average air quality of the
next 7 days for a city. Most people only care about coarse-
grained air quality, e.g., the average air quality in a city
for the next few days, ignoring the hour-level air quality.
Different from station-level short-term prediction, city-level
long-term prediction faces some other challenges:

First, air quality shows strong continuity in a short
period, while it does not exist daily or weekly periodicity.
Thus, historical air quality plays a limited role in long-
term air quality prediction, where ”the longer the forecast
horizon is, the less importance will be.” Second, there is
insufficient data to describe the future information except
for weather forecasts. Though the accuracy of weather fore-
cast decreases over time, it is still important to highlight
the influence of weather forecast for long-term prediction.
Third, it is hard to distinguish the main feature and auxiliary
features as the effect of all features change a lot over time,
let alone the next 7 days. Thus, we cannot directly reuse
DA-Short for long-term air quality prediction.

As we know, the influences from historical air quality
and weather forecasts are opposite along time, where the
former decreases while the latter increases. For capturing
these complex dynamic interactions, as shown in Figure
9, we propose a deep cascaded fusion network (DA-Long)
to predict city-level long-term air quality. More specifically,
we firstly embed air quality data, meteorology data, and
weather forecast data to learn the intra-dynamics of each
influential factor. Then, air quality data fuse weather condi-
tion data iteratively with FusionNet, which can simulate the
dynamic interaction between these influential factors along
time. Different from only considering the result of the last
fusion, we treat all fusion results equally and aggregate all
the fusion results using a weighted merge to generate the
final prediction.

Here, we extract both region-level AQI of the past few
hours by spatial transformation and city-level daily average
AQI of the past few days for air quality data. Then, we fuse
both features to simultaneously capture the fine-grained
and coarse-grained spatial and temporal characteristics of
air quality. As for the weather forecast data, we split the
weather forecast data into daily granularity, where each day
contains a sequence of weather forecast instances. Also, we
regard the current and last few hours’ meteorology data as
the 0-day weather forecast for convenience.

Fig. 9. Framework of city-level long-term prediction

3.2.1 Deep Cascaded Fusion
Considering the time information and data realism, we can
specify the air quality and meteorology as previous existing
data and specify weather forecast as future predicted data.
The former data contains the ground information already
happened, and the latter data contains the information hap-
pening in the future. As we know, the influences from pre-
vious existing data become weaken, and the influences from
future predicted data become strengthen along time. For
taking the advantages of both data, we design a cascaded
fusion architecture to capture such dynamic interactions
along time, as shown in Figure 10.

More specifically, we treat the two input parts of Fu-
sionNet are predecessor features and successor features. For
example, the first predecessor feature is air quality data;
the latter predecessor features are the results of FusionNet,
and each slice of weather forecast is a successor feature.
Cascaded fusion architecture captures the dynamic corre-
lations as predecessor feature fuses with each successor
feature sequentially. With the cascaded fusion architecture,
we can weaken the original predecessor feature’s effect and
strengthen the last successor feature along with time. With
this characteristic, comparing with distributed fusion archi-
tecture, cascaded fusion architecture is more suitable for
long-term air quality predictions for simulating the dynamic
interactions along time.

Fig. 10. Architecture of cascaded fusion

3.3 Algorithm
Algorithm 1 outlines the procedure of DA-Long. We first
construct the training instances (line 1-8) and then train the
model via backpropagation to minimize the loss (line 9-12).
The pseudo-code of training DA-Short is similar. Here we
ignore it, where can be viewed in our former paper [13].
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Algorithm 1: DA-Long Training Algorithm

Input: Historical AQI observations {AQItS}Tt=1;
Historical weather coniditions {M t

S}Tt=1;
Weather forecasts {W t

S}T+k
t=1 ;Future time interval k;

Length of past sequence h;
Output: Learned DA-Long model
/* construct training instances */

1 for ∀t ∈ [1, T ] do
2 for ∀i ∈ S do
3 xad=Daily Aggregation([AQIt−h

S , · · · , AQItS ])
4 xah=Spatial Transformations([AQIt−h

S , · · · , AQItS ])
5 xaqi=[xad, xah]
6 xm = [M t−h

i , · · · ,M t
i ]

7 xwf = [W t
i , · · · ,W t+k

i ]
8 y=Get Prediction Target(AQIt+k

S )

9 Append({xaqi, xm, xwf}, y into D)

/* train the model */
10 initialize all learnable parameters θ in DA-Long
11 while stopping criteria is not met do
12 randomly select a batch of instances Db from D
13 find θ by minimizing the loss function with Db

4 EXPERIMENTS

4.1 Settings

4.1.1 Datasets
Air quality data: Our system collects air quality data from
2,296 official air quality monitoring stations in 302 Chinese
cities every hour. Each air quality record consists of the con-
centration of 6 pollutants: PM2.5, PM10, NO2, CO, O3, and
SO2. We convert these concentrations into corresponding
AQI for each pollutant based on Chinese AQI standards.

Meteorological data: The system collects meteorological
data from 3,514 cities/districts every hour. Most major cities
have both district-level and city-level granularity for the
data, while small cities only have a city-level report. Each
record consists of weather (sunny, cloudy, overcast, foggy,
snow, small rain, moderate rain, and heavy rain), humidity,
temperature, pressure, wind speed, and wind direction.

Weather forecast data: The system collects weather fore-
cast data for 2,612 cities/districts. The updating frequency
of the forecasts is 12 hours, updating twice a day at 8 am
and 8 pm. We collect the forecasts for the next seven days
for each update, which is usually segmented into a 3-hour
time interval. Each record consists of weather, temperature,
wind strength, and wind direction.

Fig. 11. Air pollution level among different cities

For evaluation, we use three-year data (from 2014/5/1
to 2017/4/30) in nine major Chinese cities (Beijing, Tian-
jin, Shanghai, Nanjing, Hangzhou, Guangzhou, Shenzhen,
Chengdu, and Chongqing), where the first 24 months data
for training and the last 12 months for testing. Figure 11
shows the distribution of AQI of PM2.5 between 2014/5
to 2017/4 in nine cities, whose colors, defined by Chinese
standards, represent the level of air pollution. As Beijing
has the most complicated air quality, we focus on the data
in Beijing when comparing with different baselines while
showing overall results for the other eight cities. As PM2.5

is the main concern for air quality, all results in experi-
ments are based on PM2.5. Table 1 details the statistical
results in Beijing on PM2.5. For predicting the air quality
of 36 monitoring stations in Beijing, 74 neighbor air quality
stations, 17 meteorology stations, and 17 weather forecast
stations are retrieved within 100km (semidiameter). We
collect 875,394 air quality records with 327,514 meteorology
instances and 298,790 weather forecast instances. Among air
quality records, 2.3% cases are sudden changes.

TABLE 1
Data statistic of Beijing dataset

Air Quality

In-city stations 36
Instances 875,394

Sudden changes 20,540
Average PM2.5 118.2

Neighbor stations 74

Meteorology Sources 17
Instances 327,514

Weather Forecast Sources 17
Instances 298,790

4.1.2 Baselines
• LR: Linear Regression (LR) is a linear approach to

model the relationship among features.
• ARIMA: Autoregressive integrated moving average

(ARIMA) is a time series prediction model combin-
ing moving average and autoregression components.
We set the orders as (6,1,1).

• LASSO: Lasso is a regression analysis method that
performs both variable selection and regularization.
Here, we set α as 0.00001, others as default value.

• GBRT: Gradient Boosting Regression Tree (GBRT) is
a tree-based ensemble method. We set the number of
trees as 100, learning rate as 0.1, max depth as 5.

• FFA [7]: A multi-view-based air quality prediction
model containing spatial predictor, temporal predic-
tor, inflection predictor and prediction aggregator.
The parameters are the same as the original paper.

• FNN: Feedforward Neural Network (FNN), flattens
all the features and then feeds them together into a
multi-layer fully-connected network. The layer sizes
are set as 64, 32, 16, and 8.

• LSTM: Long short term memory network (LSTM) is a
recurrent model for modeling temporal correlations.
Here, we use the recent 12 AQI as input. The number
of units is set as 32. LSTM-STC and LSTM+fusion are
two variants of LSTM, where the former considers
spatial information of air quality stations, and the
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latter fuses the output of LSTM with meteorological
information. The basic settings of both methods re-
main consistent with LSTM.

• DeepST [14]: A CNN-based prediction approach for
city traffic prediction. Here, we convert the spatial
partition from circles to grids with image size (5 * 5).
The channel size of CNN is [32,16,8].

• DMVST-Net [15]: Deep multi-view spatial-temporal
network uses CNN and LSTM to jointly consider the
spatial and temporal relations. The channel size of
CNN is [32,16,8], and the length of LSTM is 16.

• DeepSD [10]: A fusion-based deep neural network
for predicting car-hailing services. Here, we fuse
air quality data with meteorology, weather forecast,
and time information iteratively in a sequence. The
parameters are set the same as our methods.

• DeepFM [16]: Factorization-machine based neural
network integrates the architecture of DNN and FM
to respectively model both high-order and low-order
feature interactions. The parameters are set the same
as our methods except for the fusion order.

• WFM: A weather-forecast-based prediction method
by Beijing municipal environmental monitoring
center, providing a district-level min-max pre-
diction for the next 12 hours, published at
http://zx.bjmemc.com.cn/ at 8 am and 8 pm every
day. We crawl the prediction results from 2014/10/1
to 2016/12/30.

For data preprocessing, we use the min-max normaliza-
tion to scale continuous features into [0,1] and use one-hot
to encode discrete features. As for deep learning models, we
apply Adam [17] to train the parameters with learning rate
0.001 and batch size 512. To prevent overfitting, we employ
dropout [18] with rate 0.5 and apply L2 regularization with
weight 0.1 on the final loss function. Besides, we use Sigmod
function for the output layer and use exponential linear
unit [19] for other layers. Here, all comparing methods are
fed with all features except for ARIMA and LSTM, which
only use air quality as input. The hyper-parameters of all
baselines are generated by grid searching. All deep models
are implemented on Keras with Tensorflow as backend.
Here, we use a GPU server with Tesla K40m GPU.

4.1.3 Model Details

The details of hyper-parameters and embedding for our
models are defined as follows, where the settings on pre-
processing, optimization, and activation functions are the
same as baselines.

• Hyper-parameters. In a FusionNet, we set the sizes of
fully-connected layers as 24, 3, and use one residual
fully-connected layer after the first fully-connected
layer. We select 90% of the training data for training,
and the remaining 10% is chosen as the validation set
for parameter tuning and early stopping. Afterward,
we continue to train the model on the full training
data for some epochs (e.g., 25 epochs).

• Embedding. Table 2 detail the embedding settings
for short-term prediction. For AQIs, other pollutants,
historical weather, we use the data in the past and

TABLE 2
Embedding setting. Encoding is represented by timestamps * feature

dimension in one timestamp.

Data Feature Encoding Embedding
AQIs PM2.5 6*17 36

Station ID Beijing 36 3

Time
Month 12

3DayOfWeek 7
TimeOfDay 4

Other Pollutants

PM10 6*1

6
NO2 6*1
CO 6*1
O3 6*1
SO2 6*1

Historical Weather

Weather 6*8

6

Wind Speed 6*1
Wind Direction 6*4

Humidity 6*1
Temperature 6*1

Pressure 6*1

Weather Forecast
Weather (k/3)*8

6Wind Strength (k/3)*4
Wind Direction (k/3)*4

current 6 hours to incorporate the temporal infor-
mation. For the weather forecast, we use k/3 fore-
cast instances to capture the dynamic changes of
future weather conditions. Here, we combine the
features from the data to learn the embedding for
exploring the intra-dynamics of each factor. For long-
term prediction, we embed the AQI data in the past
and current 6 hours into 36 and embed the weather
forecast data in one day into 12. The embedding
setting for long-term prediction is similar to short-
term prediction.

4.1.4 Evaluation Metrics
We use prediction accuracy (acc) an d mean absolute error
(mae) for evaluation, which are defined as follow:

acc = 1−
∑

i |ŷi − yi|∑
i yi

,mae =

∑
i |ŷi − yi|
n

(2)

Where yi and ŷi mean the prediction value and real
value of i timestamp, and n is the total number of cases.

For sudden changes [7], we select the cases whose AQI
is bigger than 100 and decreases over a threshold in the next
few hours, e.g. 50 in the coming one hour, or 100 in the
coming two hours, or 150 in the coming three hours.

For the validation schema, each experiment is repeated
5 times and averaged, displaying the mean±standard devi-
ation in Table 3 and Table 8.

4.2 Performance Comparison for short-term prediction
4.2.1 Comparison with Different Baselines
Table 3 shows the performance of our proposed DA-Short
approach comparing with other competing baselines. DA-
Short achieves the highest accuracy in both general cases
and sudden changes as it can automatically discover com-
plicated air pollution patterns. By considering air quality
data recorded by neighbor stations, LSTM-STC outperforms
LSTM significantly, which shows the importance of air
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TABLE 3
Comparison with different baselines in Beijing. For neural network models, we run each of them 5 times and show ”mean±standard deviation”

Methods 1-6h 7-12h 13-24h 24-48h Sudden Change #Params
acc mae acc mae acc mae acc mae acc mae

ARIMA 0.751 28.3 0.576 52.1 0.458 65.4 0.307 74.6 0.066 112.9 /
LASSO 0.790 21.9 0.620 39.7 0.534 48.9 0.452 57.1 0.273 87.2 /
GBRT 0.792 21.8 0.629 38.8 0.540 48.0 0.458 56.5 0.321 77.8 /
LSTM 0.780 23.1± 0.1 0.606 41.2± 0.1 0.491 53.2± 0.1 0.380 64.8± 0.1 0.240 90.1± 1.1 4.3k

LSTM-STC 0.794 21.6± 0.2 0.622 39.6± 0.2 0.508 51.4± 0.1 0.396 63.0± 0.3 0.314 82.5± 1.6 6.5k
DeepST 0.806 20.4± 0.1 0.633 38.1± 0.2 0.545 47.5± 0.2 0.466 55.7± 0.7 0.380 74.5± 2.9 5.5k

DMVST-Net 0.806 20.4± 0.1 0.638 37.8± 0.3 0.550 47.4± 0.5 0.481 53.9± 0.7 0.419 70.4± 2.0 6.4k
DeepFM 0.808 20.1± 0.1 0.643 37.3± 0.2 0.549 47.2± 0.6 0.474 54.9± 0.6 0.396 72.3± 1.9 2.5k
DeepSD 0.811 19.7± 0.1 0.645 37.1± 0.2 0.551 46.8± 0.8 0.479 54.3± 0.7 0.428 69.5± 3.3 4.7k

DA-Short 0.812 19.5± 0.2 0.656 36.1± 0.2 0.569 45.1± 0.1 0.500 52.1± 0.3 0.471 63.8± 2.8 6.8k

quality’ spatial signals. The results of LSTM methods are
not good for two reasons. One is that air quality is affected
by many complex factors, and the other is air quality has
temporal closeness without obvious daily/weekly/monthly
pattern. Comparing with DeepST, the results show that
CNN is not suited in air quality prediction tasks as air
quality data is sparse, and the image size is small after
preprocessing. As a result, DMVST-Net is not suited for
air quality prediction task. Comparing with DeepFM, the
results show the effectiveness of DA-Short as DeepFM is
designed for high-dimensional and extremely sparse data
in CTR tasks. Thus, a deep understanding of the problem
and data is important, which we can not directly employ
an existing model in other domains. By fusing the main
feature with each auxiliary feature in a parallel manner, our
proposed distributed architecture can model the underlying
complex interactions of direct factors and indirect factors,
which is more suited for short-term air quality prediction
task. Besides, we illustrate the parameter size for 1-6h pre-
diction in the last column. For other predicting settings, the
parameters are slightly larger than that of 1-6h predicting
model considering the weather forecasts.

4.2.2 Comparison with Official Prediction

Table 4 shows the comparison between DA-Short and WFM
during the period: 2014/10/1 to 2016/12/30. As WFM
provides the predictions in district-level min-max range for
the next 12 hours and DA-Short provides the predictions
in station-level for each hour over the next 48 hours, we
evaluate the prediction results in both hourly-station level
and 12-hour min-max district level. For hourly station-level,
we split the predictions of WFM to hourly station-level
by considering the average of min-max range; for district-
level, we merge the predictions of DA-Short to district-
level and get the min-max range for the next 12 hours.
In both evaluation settings, DA-Short has higher accuracy
than WFM with 22% accuracy improvements. Besides, DA-
Short has a finer spatial and temporal granularity, a farther
prediction period, and a faster updating frequency, which is
robust and general enough on different prediction settings.
The reason behind it is that WFM is a traditional dispersion
model with high numerical computation complexity, which
needs accurate input data. However, it is impossible to get
all the factors completely and accurately. Thus, prediction
accuracy is hard to be guaranteed.

TABLE 4
Compare with official prediction in Beijing

Methods Station Level District Level Update
Hour

Grained
Levelacc mae acc mae

WFM 0.54 54.5 0.64 46.1 12 District
DA-Short 0.77 26.7 0.86 17.9 1 Station

4.2.3 Comparison with Previous Online Model
Figure 12 shows the comparison between DA-Short and the
previous online approach, FFA, on nine major Chinese cities.
In general, comparing with FFA, DA-Short can achieve an
average accuracy of (81.1%, 46%) with an average (1.8%,
17.3%) accuracy improvements on 1-6 hour and sudden
changes predictions. The reason behind it is that FFA trains
three separate prediction models for modeling spatial and
temporal features and uses another model for the model en-
semble, which may fail to capture the interactions among all
factors. Also, FFA is a shallow method which cannot capture
the underlying complex pattern of each factor. Moreover, the
features used in FFA is not strong enough as it ignores the
dynamic change of weather forecasts. Our approach learns
the air pollution patterns in a deep manner, simultaneously
considering the individual and holistic influences, which
is more capable of predicting general cases and sudden
changes than FFA.

Fig. 12. Comparison with previous online model on nine Chinese cities

4.2.4 Performance on Spatial Transformation
We show the effectiveness of spatial transformation compo-
nent (STC) in Table 5. Comparing with only using the data
from the target station, DA-Short has higher accuracy as it

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on January 05,2021 at 23:34:52 UTC from IEEE Xplore.  Restrictions apply. 



2332-7790 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2020.3047078, IEEE
Transactions on Big Data

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

learns the actual situation that air pollutants are dispersed in
geographical space. With the signals from spatial neighbors,
DA-Short can capture the dynamic changes of air quality
from the spatial perspective. If we directly fed air quality
readings from k-nearest stations (k=17, same size with STC)
as inputs, the result is worse than STC. The reason behind
it is each station has different k-nearest stations, which may
confuse the neural network for learning the spatial infor-
mation. While the STC considers spatial correlations and
generates a consistent input from eight directions, which
is more suitable for real-world scenarios for simulating
second-hand pollutant sources. In STC, we find that inner &
outer circles have a better performance than a single inner
circle. The reason behind it is that it considers the signals
from both near and distant cities, where air pollution may
disperse from a distant source by the wind. Especially for
the sudden changes, the information from distant is more
important than general cases.

TABLE 5
Results on different preprocessing

Methods 1-6h Sudden Change
acc mae acc mae

Tradi-
tional

Target station 0.792 21.8 0.314 82.5
17 nearest stations 0.802 20.1 0.370 75.2

STC Inner circle 0.806 20.3 0.411 70.4
Inner & outer circle 0.812 19.5 0.471 63.8

4.2.5 Performance on Distributed Fusion
We show the effectiveness of distributed fusion architec-
ture in Table 6. DA-Short outperforms all kinds of fusion
combinations, bringing a significant improvement beyond
individual influences, a slightly better performance than
holistic influence and distributed individual influences. Di-
rect influence has a better result than individual influences
in 1-6h and 7-12h, while it has a worse result in 13-24h
and 24-48h, which demonstrates that air quality changes
a lot with the effects of other factors along time. Among
all individual influences, WF has the best result for 13-
48h, showing weather forecast is the most important factor
for long-term prediction. Holistic influence and distributed
individual influences have a better result than every indi-
vidual influence, which also demonstrates that air quality
is affected by multiple factors. With such distributed fusion
architecture, we can simultaneously model the interactions,
where highlight the importance of the main feature and
capture the influences from auxiliary features.

TABLE 6
Results on different fusion architecture

1-6h 1-6h 7-12h 13-24h 25-48h
Direct Influence AQIs 0.793 0.624 0.508 0.398

Individual
Influence

HW 0.739 0.605 0.517 0.412
WF 0.752 0.607 0.549 0.472
SP 0.750 0.596 0.509 0.399
MP 0.758 0.613 0.510 0.399

Holistic Influence HI 0.772 0.630 0.564 0.496
Distributed (HW,WF,SP,MP) 0.808 0.653 0.565 0.495

DA-Short 0.812 0.656 0.569 0.500

4.2.6 Performance on Embedding
We show the effectiveness of embedding in Table 7. After
embedding, we can see a clear improvement in general cases
and sudden changes as it can capture the intra-dynamics of
each influential factor by learning the hidden representation.
Besides, we combine the features from different time slots,
where embedding can learn the spatio-temporal correlations
of air pollution dispersion.

TABLE 7
Results on embedding setting

Methods 1-6h Sudden Change
acc mae acc mae

w/o embedding 0.807 20.2 0.429 68.1
with embedding 0.812 19.5 0.471 63.8

4.3 Performance Comparison for Long-term Prediction

4.3.1 Comparison with Different Baselines
Table 8 shows the performance of different baselines for city-
level long-term prediction. Here, we ignore the DeepST and
DMVST-Net as the spatial sparse of air quality data. For
FNN, it directly concatenates all features together, which
ignores the temporal correlations for different days. LASSO
performs much better than LR, as most features are discrete.
LSTM+Fusion means using LSTM to learn the temporal
dynamics of weather forecast data and then fuse with air
quality data. However, the performance isn’t so good as
it ignores the dynamic interaction along time. As most
input data is represented by one-hot encoding, DeepFM is
good at dealing with sparse input. The results of DeepSD
and DeepFM are fairly close. DA-Long performs best with
an average accuracy of 63.4%, which indicates our pro-
posed cascaded architecture is more suited for long-term air
quality prediction task. By fusing the predecessor features
with each slice of successor features iteratively, DA-Long
can weaken the effect from the predecessor features and
strengthen the importance of successor features over time.
Thus, it can simulate the dynamic interaction between air
pollutants and meteorological conditions along time, while
the DeepSD model ignores it. Besides, we illustrate the size
of parameters for day 1 prediction in the last column. Other
prediction settings vary with different weather forecast size,
whose parameter size is slightly larger than that of day-1.

4.3.2 Comparing DA-Long with DA-Short Model
Figure 13(a) shows the comparison between DA-Long and
DA-Short for future 7-day prediction. Overall, DA-Long
has a better performance in all nine cities, with an aver-
age accuracy of 60.5% with 4.3% accuracy improvement
comparing with DA-Short. In Figure 13(b), we show the
comparison results on Chengdu, where DA-Long performs
better than DA-Short for each day. This is because it is hard
to distinguish main and auxiliary features as the effect of
different features change a lot along time, where the effect of
air quality decreases while that of weather forecast increases
illustrated in Figure 2(b). With the ability to model dynamic
correlations along time, DA-Long is more suitable for long-
term prediction than DA-Short.
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TABLE 8
Comparison with different baselines in Beijing. For neural network models, we run each of them 5 times and show mean±standard deviation”

Methods day 1 day 4 day 7 7-day average #Params
acc mae acc mae acc mae acc mae

LR 0.685 31.3 0.431 56.1 0.413 57.8 0.464 52.9 /
LASSO 0.716 28.2 0.605 38.9 0.592 4.1 0.601 39.3 /
GBRT 0.742 25.6 0.582 41.2 0.581 41.2 0.606 38.9 /
FNN 0.714 28.4± 1.3 0.559 43.5± 2.7 0.559 43.4± 0.7 0.579 41.6± 0.5 19k

LSTM+Fusion 0.739 25.9± 0.4 0.606 38.8± 0.5 0.600 39.4± 0.1 0.611 38.4± 0.2 5.3k
DeepFM 0.741 25.7± 1.1 0.601 39.3± 0.8 0.601 39.3± 0.6 0.620 37.5± 0.6 1.8k
DeepSD 0.744 25.4± 0.2 0.622 37.2± 0.4 0.600 39.4± 0.4 0.623 37.2± 0.4 2.1k

DA-Long 0.749 24.9±0.5 0.629 36.6±0.6 0.613 38.0±0.2 0.634 36.1±0.3 9k

Fig. 13. Comparison with DA-Short on long-term prediction

4.3.3 Comparing with Different Feature Variants
As shown in Table 9, we designed some feature variants for
comparison. We can see that air quality data is useful in
short-term prediction, but perform worse in long-term pre-
diction. While for meteorology and weather forecast data,
vise verse. With these characteristics, we design the cas-
caded fusion architecture to combine these different kinds of
data. Though all features combination could not get the best
result on day 7, we make a better trade-off for performing
best in 7-day average prediction.

TABLE 9
Results on different feature variants

Feature Combination day 1 day 4 day 7 7-day average
acc acc acc acc mae

Xaqi 0.696 0.446 0.427 0.478 51.51
Xm +Xw 0.579 0.623 0.618 0.608 38.69

Xaqi +Xm +Xw 0.749 0.629 0.613 0.634 36.09

4.3.4 Performance on Weighted Merge
We compare two network variants with DA-Long in table
10. For the first variant, we remove the Weighted Merge
layer and only use the last output of the FusionNet, leaving
out the intermediate outputs. From the comparison result,
we can see that DA-Long outperforms this model variant.
The reason behind it is that Weighted Merge can learn
the importance of each fusion output and fuse the results
automatically, which can incorporate more information. As
to the second variant, we replace the Weighted Merge layer
with an Attention layer. The comparison result also demon-
strates the Weighted Merge is more suitable than Attention
for fusing all the output. Attention concatenates all results

together and utilizes Softmax function to distribute weights,
so the sum of the weight vector is restrained to 1, which may
result in a relatively worse performance. As for Weighted
Merge, it can learn the weights of each fusion output indi-
vidually with fewer limitations.

TABLE 10
Comparison with different network variants

Methods day 1 day 4 day 7 7-day average
acc acc acc acc mae

w/o Weighted Merge 0.749 0.614 0.608 0.629 36.60
Attention based 0.743 0.621 0.610 0.629 36.55

DA-Long 0.749 0.629 0.613 0.634 36.09

4.4 Performance on Data Crawler
To evaluate the performance of our data crawler (Multi-
Task), we compare it with the traditional single-task based
data crawler (Single-Task) on crawling the data. Figure 14(a)
shows the comparison of delay time and crawl time, where
the delay time denotes time intervals between data being
published and data being stored into the database, and
crawl time means how long it takes to execute all crawling
tasks. We can find that Multi-Task architecture can crawl all
data on average of 5.2 minutes with an average 5.4 minutes
delay, which is 6 times faster on delay time and 10 times
faster on crawl time than Singel-Task. Figure 14(b) presents
the performance of input and output network transfer rate,
where both rates of Multi-Task is 10 times of Single-Task,
which demonstrates our data crawler can make better use
of web resources. With the parallel mechanism, multi-thread
and multi-queue based multi-task architecture outperform
the single-thread based traditional crawler by an order of
magnitude in terms of efficiency.

Fig. 14. Comparison of Different Data Crawler
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4.5 Overall Discussion

The frameworks of our proposed approaches are based
on a deep understanding of air pollution. We propose a
distributed fusion architecture for short-term predictions,
where the simple methods directly concatenate all features
together for fusion. From the perspective of real-world sce-
narios, air pollution is affected by direct factors and indirect
factors. At most times, all indirect factors will simultane-
ously affect direct factors. Also, each indirect factor has
its effect on direct factors. Derived from such knowledge,
we design our distributed fusion architecture, which can
well capture these influential factors simultaneously. From
the perspective of feature selection, different features have
different impacts. By fusing the main feature with each
auxiliary feature in a parallel manner, we can highlight the
importance of main feature and capture the influences from
auxiliary features. Besides, we use the Weighted Merge layer
to aggregate the results from all subnets, which can model
the dynamic effects of different higher-order influences.
Thus, our distributed fusion architecture can automatically
learn the importance of each feature and dynamically fuse
them to achieve better prediction accuracy.

Besides, we propose a cascaded fusion architecture for
long-term air quality prediction. From the perspective of
real-world scenarios, the influences from historical air qual-
ity and weather forecasts for long-term predictions are
opposite along time, where the former decreases while the
latter increases. Thus, it is important to combine the advan-
tages of these features and simulate the dynamic interac-
tions along time. From the perspective of feature selection,
we denote air quality and meteorology as predecessor fea-
tures and weather forecast as successor features. By fusing
the predecessor features with each slice of successor features
iteratively, we can weaken the effect from the predecessor
features and strengthen the importance of successor features
over time. By using the Weighted Merge layer, the network
can learn the importance of each fusion output and fuse the
result automatically. That is why cascaded fusion architec-
ture is more suitable for long-term prediction.

Here, we only use DNN without using CNN and LSTM
in our proposed approach. Typically, CNN can learn spatial
correlations. However, the air quality data is sparse in the
spatial dimension. For example, there are more than 2500
grids in Beijing within six rings using 1 kilometer * 1
kilometer for partition, while only 36 air quality monitoring
stations exist. The missing rate is bigger than 98%, which
brings huge uncertainty even though using interpolation
methods for filling missing values. If we directly convert
the spatial partition in the spatial transformation component
from circles to grids with image size (5 * 5), the experiment
result is not good in section 4.2.1. That is why the CNN
model is not suitable for handling such sparse data. LSTM
is used for modeling temporal dependency. However, air
quality is affected by multiple factors without a strong
temporal dependence, where only has temporal closeness
without daily/weekly/monthly periodic patterns. Consid-
ering the efficiency of the online prediction system, we
chose DNN except for LSTM for fast running. Besides, we
conduct the experiment about LSTM in section 4.2.1, where
the performance is not good.

5 RELATED WORK
5.1 Air Quality Prediction
Air quality prediction methods mainly fall into two cate-
gories: numerical prediction models [20] and data-driven
models [21]. Numerical prediction models, such as CMAQ,
WRF/Chem, and CHIMERE, mainly identify the root cause
of air pollution based on atmospheric dynamics and en-
vironmental chemistry [22]. Based on the data from emis-
sion sources and meteorological data, numerical prediction
models construct equations to model the spatial-temporal
distribution and transitions [23]. However, it is tough to get
all these factors completely and accurately. Thus, prediction
accuracy is hard to be guaranteed. Besides, the computa-
tion complexity is quite high, usually with a few hours.
Data-driven models, such as artificial neural networks and
gradient boosting decision tree, forecast air quality based
on a variety of features for learning linear or nonlinear
correlations [24], [13]. Recently, Zheng et al. proposed a
multi-view-based hybrid model [7], which is our previous
model in the online system. However, FFA is an ensemble
method with a temporal predictor, a spatial predictor, a dy-
namic aggregator, and an inflection predictor. Our approach
deeply learns the air pollution patterns, considering the
interactions of these factors, which is more capable of air
quality prediction than FFA.

5.2 DNN for Spatio-Temporal Prediction
Recently, many works show the strength of DNN on solv-
ing spatio-temporal prediction tasks [25], [26]. Song et al.
[27] proposed a recurrent neural network to simulate and
predict human mobility. To predict citywide crowd flows,
Zhang et al. proposed a spatio-temporal residual CNN-
based network [12], [14], [28]. Yao et al. proposed a deep
multi-view network to predict citywide taxi demand based
on CNN and LSTM [15]. Athira et al. proposed an RNN
based air quality prediction approach [29]. Qi et al. develop
a general approach called DAL to unify the interpolation,
prediction, feature selection, and analysis of the fine-grained
air quality into one model [30]. Du et al. proposed a hybrid
deep learning method to combine one-dimensional CNNs
and Bi-directional LSTM for the single-step and multi-step
predictions [31]. Different from that, our proposed methods
are derived from the domain knowledge of air pollution.
Our proposed deep distributed fusion network can simulate
the individual and holistic effects of all influential factors for
predicting station-level short-term air quality. Our proposed
deep cascaded fusion network can capture the dynamic in-
fluences from previously existing data and future predicted
data for predicting city-level long-term air quality.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a DNN based approach to predict
the air quality of the next 48 hours for each monitoring
station and the daily average air quality of the next 7 days
for a city. For short-term air quality prediction, considering
complex interactions between direct and indirect factors,
we propose a deep distributed fusion network to simulate
the individual and holistic effects of influential factors.
While for long-term air quality prediction, inspired by the
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effects from different features varying differently along time,
we design a deep cascaded fusion network to capture
the dynamic influences from previously existing data and
future predicted data. Experimental results on three-year
data from nine Chinese cities, consistently demonstrate the
effectiveness of our proposed approach. We have developed
a real-time system, providing hourly station-level and daily
city-level air quality predictions for 300+ Chinese cities.
Moreover, we introduce a multi-task architecture based data
crawler, task scheduler, and prediction model, which can
improve the system’s efficiency and stability.

In the future, we will explore the combination of numer-
ical prediction models and data-driven models for improv-
ing the prediction accuracy, especially for sudden changes.
Besides, we want to diagnose the root cause of air pollution
from a data-driven perspective, such as study the correlation
between vehicular emission and air pollution.
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